
The WBEngine FishTank

Here we introduce a totally different way of using the WeeBee engine. In Story-Writing-Coding, character actions
were synchronised by making each command, like pip.jump(); last for a certain length of time; the default was 2
seconds. But there’s another way of coding where we do not enforce this constraint. Instead we give the actors a
speed, and use this to make them move.

This approach is very useful for KS2, where children must “use sequence, selection, and repetition in programs; work
with variables and various forms of input and output”. In fact, programming this way is easier than Story-Writing-
Coding. From a cross-curriculum point of view, this approach links nicely with mathematics and physics.

We do need to understand what an object’s motion really is. That’s simple, if something has a speed or a velocity
then it is moving. The larger its velocity, the larger the distance it covers in any interval of time. It moves faster! The
code for the FishTank has a new function called “swim” like this, pip.swim(speedX); so if you wrote pip.swim(10);
then pip would swim with a speed of 10.

Perhaps the best way to understand the FishTank is to look at some code. In the code shown below, we make the
fish move to the left then the right bouncing between two obstacles. The code is aFish1.cde

Line Statement Comment

7 float x; Here we declare the variables we shall use in the rest of the program. [The effect
of this is to reserve space in memory for the variables] 8 float velyX;

9

10 public void once() { Start of the WeeBee function “once” which runs one time when play is pressed

11 showGrid(); Tells the engine to show the Cartesian grid

12 velyX = 10; Sets the value of velyX to 10. This is the starting value of the fish velocity in the x-
direction

13 } Curly bracket shows the end of the function “once”

14

15 public void loop() { Start of the WeeBee function “loop” which runs continually when once is done

16

17 add(pip,10,0);
Here we add characters and scenery as usual. Pip plays a special role. She does not
move, but she determines how long the loop code will run.

18 add(puffy,30,20);

19 add(tree,20,20);

20 add(tree,50,20);

21

22 pip.rest(20); This tells Pip to make the loop run for 20 seconds

23

24 x = puffy.getX(); This gets the current position of the fish, which we use in lines 26 and 29

25

26 if(x > 50) Here we test if the fish has reached the right boundary (at 50) and if it has …

27 velyX = -10; … then we set the x-velocity negative (so that the fish moves to the left)

28

29 if(x < 20) Here we test if the fish has reached the left boundary (at 20) and if it has …

30 velyX = 10; … then we set the x-velocity positive (so that the fish moves to the right)

31

32 puffy.swim(velyX); This line actually makes the fish swim with the velocity set by the previous code

33

34 } Curly bracket shows the end of the function loop()

The important parts of the structure of this code have been highlighted. Blue shows the start and end of each block
of code associated with the functions once() and loop(). The code itself shows the start of each block by a { and the
end by a }. Declaring the variables used is shown as aaaaa , and declarations are usually made “up top”. The “guts” of
the program (which make the fish behave) are shown in yellow. Here, it’s best to think backwards; line 32 makes the
fish move, using its velocity, velyX. So how is this velocity given a value? Well, the lines before that set the value of
velyX, i.e. lines 27 and 30. To understand which line is used, we need to look at the selection statements, lines 26
and 29. They use the value of the fish’s location x, and this is grabbed at line 24. So if the fish moves to the right, and
past the right see-weed, its velocity is set to -10, and if it moves to the left and strays past the left see-weed, it will
start moving to the right. Remember that the lines in the loop() function (17- 32) are run for 20 seconds, as specified
in line 22, so the fish will effectively “bounce” between the see-weed.

So how does the above code relate to the KS2 Computing programme of study? Well, lines 26 and 27, and lines 29
and 30 refer to selection, the loop() function refers to iteration, and lines 7,8,12,24,26,29,30,32 refer to variables.

orange

Reflecting on this code, there are two key variables which are used, the x-location of the fish (x) and the velocity of
the fish velyX. This could be simplified, to remove the explicit mention of velyX. We could use a function to define
this. This helps, since the code could easily be extended to include more fish, or even jellyfish. Here we are moving
into the territory of OOP. So let’s revisit the above code using this new model.

Line Statement Comment

7 float x; Here we declare the variables we shall use in the rest of the program.

8

9 public void once() { Start of the WeeBee function “once” which runs one time when play is
pressed

10 showGrid(); Tells the engine to show the Cartesian grid

11 add(puffy,30,20); Add the fish

12 puffy.setVelyX(10); Set the initial x-velocity of the fish

13 } Curly bracket shows the end of the function “once”

14

15 public void loop() { Start of the WeeBee function “loop” which runs continually when once is
done

16

17 add(tree,20,20);
Here we add characters and scenery as usual. Pip plays a special role. She
does not move, but she determines how long the loop code will run.

18 add(tree,50,20);

19 add(pip,10,0);

20

21 pip.rest(20); This tells Pip to make the loop run for 20 seconds

22

23 x = puffy.getX(); This gets the current position of the fish, which we use in lines 25 and 28

24

25 if(x > 50) Here we test if the fish has reached the right boundary (at 50) and if it has …

26 puffy.setVelyX(-10); … then we set the x-velocity negative (so that the fish moves to the left)

27

28 if(x < 20) Here we test if the fish has reached the left boundary (at 20) and if it has …

29 puffy.setVelyX(10); … then we set the x-velocity positive (so that the fish moves to the right)

30

31 puffy.swim(); This line actually makes the fish swim with the velocity set by the previous
code

33

34 } Curly bracket shows the end of the function loop()

WeeBee Fish-Tank API

Movement (Implicit)

puffy.swim();
puffy.move();

Moves with a constant speed set by a setVely function.
Preferred method. Makes use of several objects easier

Movement (Explicit)

puffy.swim(velyX);
puffy.swim(velyX,velyY);
puffy.move(velyX);
puffy.move(velyX,velyY);

Moves with constant speed passed as an argument.
Requires variables for each object. Not preferred method

Sets

puffy.setVelyX(velyX);
puffy.setVelyY(velyY);
puffy.setVelyXY(velyX,velyY);

puffy.setX(x);
puffy.setY(y);

Gets

puffy.getVelyX();
puffy.getVelyY();

puffy.getX();
puffy.getY();

Immediate Image change

puffy.looksLike(fname);
puffy.lookslike(fname);

