
WeeBee Code Reference (Schools Edition)
CBP 01-11-19

Methods

The table below lists the methods currently available for Actors and Props. The only difference between Actors and
Props is that Actors can display emotions. The organization follows a linguistic classification, which stems from the
engine’s progeny in Story-Writing-Coding. May methods have several versions; e.g., the simplest jump(); can be
called without a parameter, but the jump height can be specified like this jump(50);

All methods (actions) take the same time. This is currently set to 2.0 seconds. This can be changed, as explained
below. The term “dObj” (dynamic object) refers to either an Actor or a Prop.

Process: Material: Transformative: Enhancing: Motion “move-at”

Basic Function + param

flipH(); horizontal flip

flipV(); vertical flip

spin(); spin(speed); spin at location

hover(); hover(speed); same as spin

 spinV(speed); rotate about vertical axis

jump(); jump(height); jump

rest(); rest or pause

Process: Material: Creative:

hide(); hide

show(); un-hide

Process: Material: Transformative: Elaborating: size

 shrink(scale); shrink by scale e.g. 0.8

 grow(scale); grow by scale e.g. 1.2

 squishH(scale); horizontal scale change

 squishV(scale); vertical scale change

 squishHV(scaleH,scaleV) scale change both horizontal and vertical

Process: Material: Transformative: Extending “possession”

 pickup(dObj); pick up a Prop or an Actor

 putdown(dObj); put down a Prop or an Actor

Process: Material: Transformative: Enhancing: motion “move-to”

 flyto(X,Y); moves in a straight line to (X,Y)

 flyto(dObj); moves in a straight line to a Prop or Actor

 walkto(X); moves horizontally to X, in a straight line

 hopto(X); makes a parabolic trajectory to X

 runto(X); moves horizontally to X with a wobble

 flapto(X); moves in a horizontal line to X with wings flapping (for winged creatures)

 stepto(X); moves in a horizontal line to X with legs moving (for non-winged creatures)

 leapto(X,Y); makes a parabolic trajectory to (X,Y)

 leaptoH(X,Y,H); makes a parabolic trajectory to (X,Y), with control over the leap height

 flyto3D(X,Y) like flyto(X,Y) but this variant gives a sense of perspective EXPERIMENTAL

Process: Mental: cognition

 thinks(string); string appears on canvas preceded by actor name

 thinks(string, fontSize);

Process: Verbal: Projecting

 says(string); string appears on canvas preceded by Actor name

 says (string, fontSize);

 says(string,fontSize,true); string appears near top-right of actor/prop

 shouts(string); string appears on canvas without the Actor name

 shouts(string, fontSize);

 chirps(string) plays a .wav file, the string is the filename, Cut off after anim time

 chirps(string, true) same as chirps but plays sound at end of anim time.

 sings(string) plays a .wav file, the string is the filename. Plays entire file

Process: Relational: Intensive Attributive

 is(emotion);
feels(emotion);

Only for Actors. Changes facial expression.

 appears(image); Changes the image. Parameter is a string, or a proxy in Header.txt

Process: Existential:

 add(dObj,X,Y); adds Actor or Prop at (X,Y)

 add(scenery,X,Y); adds item of scenery at (X,Y)

 add(scenery,X,Y,front); idem but in front of Actors

Process: Mental: Perception

 isNear(dObj); returns boolean true if a dObj is close to another dObj

 canSee(dObj); returns true if both Props or Actors are on the canvas

Scene Management

 setScene(sceneID);

Select a built-in scene

 setScene(“fname”); Load new scene from image supplied 900 x 600 .jpg

 changeScene(“fname”); Load new scene from image supplied 900 x 600 .jpg and remove all
previous scenery

showGrid(); Shows the grid on the canvas.

synch(); forces synchronisation of all Props and Actors to this point

tracePaths(); Breadcrumbs dropped when Actors and Props move – shows their paths

Turtle Graphics (“LOGO”)

 moveForward(dist); Note. These can be accessed by WeeBees and Props.

 rotate(degrees);

 setpenDown(true_false);

 setpenDown(true_false, color);

Non-Latent Methods. These return immediately, they do not wait 2 seconds. Discussed in a forthcoming document.

 moveTo(X);
moveTo(X,Y)

 getX();
getY();

 asksForNumFloat(string);
asksForNumInt(string);
asksForYesNo(string);

User Input

 tells(str);

 resize(scale)

 becomes(emotion)

The Differences between the “Move-To” methods.

First, let’s have a look at the three methods that take a single parameter X. This means they are concerning with
movement in the X-direction, so at the end of the movement there is no change in the Y-location of the Actor or
Prop. These are shown in the picture below, where tracePaths(); has been used to create the blue breadcrumbs.

Grog has used the walkto(X); method; he moves in a straight line. Flup has used the runto(X); method; she bounces
up and down as she moves. Pip has used the hopto(X); method and her trajectory is the parabola expected of
someone moving in gravity. The flapto(X); and stepto(X); methods behave like walkto(X); but either feet or wings
move.

Now let’s look at the difference between the flyto(X,Y); and the leapto(X,Y) methods. In the image below, both Pip
and Flup have started from (10,0) and have moved to (60,40). Pip who uses the flyto(X,Y); method moves along a
straight line, from (10,0) to (60,40). Flup, who has used a leapto(X,Y); has executed a parabolic arc. But it ends at
(60,40). It is a bit like hopTo(X); but while the latter will always return the Actor to the ground, you can use
leapto(X,Y); to jump on top of scenery.

The Differences between Actors, Props and Scenery.

1) You can add any number of scenery items (including several of the same name). Scenery cannot move.

2) You can add one of each type of Prop. Props can execute all the above methods except express emotions. So you
can’t use is(…) or feels(…).

3) Actors are like Props, you can add just one of each type. They can express emotions, so you can write
pip.feels(emotion); or flup.is(emotion); where the following emotions are available, e.g. pip.feels(puzzled);

 content, happy, puzzled, sad, excited, scared, worried, angry, surprised

4) The names of Props are derived from the names of scenery items my adding “my” to the front. For example barrel
is scenery, but mybarrel is a prop. But not all scenery is a prop!

The Configuration File

This is the file Header.txt in the root directory. You can open this with a text editor (Notepad, Notepad++). There are
two lines which you can change. Take care if you change this file; any error then the engine will be unforgiving. I
suggest you make a backup, copy and rename to HeaderBak.txt.

1) The line

 canvas.animationTime=2.0;

sets the time each method action takes, here to 2.0 seconds. To speed things up, you could reduce this to 1.5, or
even something smaller. But too small a value may make the engine crash.

2) There are two “commented out” lines. You can un-comment one or the other to change the font size

 canvas.gui.selectedSourcePanel.setFontSize(16);

or the font family, type and size

 canvas.gui.selectedSourcePanel.setFont("Ariel",Font.BOLD,14);

Importing Children’s Assets

The engine really becomes alive when children create their own Props and Backgrounds, each of which needs a
single image:

1) A background image must have size width = 900 pels, height = 600 pels, and it must be a .jpg image. So if a child
creates an image myImage.jpg then they can use it by a call to

 setScene(“myImage”); or clearScene(“myImage”);

2) Prop images can vary in size, look at the images in the data folder to get an idea. Importing them is a little more
tricky. Here’s an example. The declaration must go at the top. The creation must go in the once() body and it can be
used, as normal within the loop() body. Note that you use it by referring to its name (here “freddy”) rather than the
image name. This must be made clear to the children.

But there’s more than the technical side of introducing children’s own assets. I’m thinking about their design. The
WeeBee characters, scenery and backgrounds have been designed together to produce coherent animations; it
would not look good to have a humanoid character who is then made to fly around. Humans do not have the
affordance of being able to fly (nor does Grog). So in designing their assets, children should think about how they
relate to the code methods (in the table above). Can my asset fly? think? speak? Can it pick something up? Can it be
picked up? My experience has been interesting, especially working with a mixed Yr3&4 group, below is a selection of
their creations.

There was a clear gender difference. Boys created robots, robot warriors, and rather abstract zoomorphic
characters. Girls produced more realistic animals which tended to be very benevolent. Then there were

Declare a SceneObject and give
it any name (here “freddy”)

Create the named object, using
the image name – I chose

“barrel”

Now you can use it, by its name

anthropomorphic characters; a fairly and the class teacher (she’s the one holding a laptop), I’m the one with a stripy
jumper. Children’s personal experiences were clearly at play here. I think there is a great opportunity to connect
coding, English and art; how to design characters which can interact and tell a story. It all hinges on the affordances
of everything in the scene.

Backgrounds : Theatre Backdrop and Flats

A small selection of backdrops and flat are available, to allow the coding of a theatrical performance, in effect
children will be writing a play-script. The backdrops are 900 x 600 jpeg files, so can be called up using setScene(…);
and the flats are matched .png files. This means the flats can be configured as props (as explained above) and made
to move, i.e. descend from above, representing scene changes. Here’s an example of a backdrop, the associated flat
and how they appear combined, and finally with the façade added. Of course additional flats can be

created to provide scene-changes and entire theatrical performances. So far we have not trialled this approach with
children.

Using Sounds

Sound effects, music or spoken narration can be placed in the folder sounds using the .wav file format. There are
two ways sounds can be used:

1) A Long piece of music or narration can be started using e.g., pip.sings(“filename”); The sound will start when this
line of code is executed, and will continue for the length of the sound file in seconds. This will therefore accompany
the commands which follow.

2) A sound-effect can be played as part of the normal sequence of character actions, e.g., pip.chirps(“filename”);
The sound-effect should last no more than 2-seconds. So in the following sequence

 pip.jump();

 pip.chirps(“Egg”);

 pip.spin();

Pip will jump, then you will hear the sound of a cracking egg, then Pip will spin.

There is another way of using chirps(); which will combine a sound with an action. This is shown in the following
sequence

 pip.jump();

 pip.chirps(“Egg”,true);

 pip.spin();

Here, Pip will jump, then she will spin accompanied by the sound of the cracking egg.

