
Preparing to Teach

Introduction

Experience is the best teacher. But even the best teacher needs guidance on how to get that experience, efficiently.
A busy teacher does not have the luxury of the huge amount of time needed to learn something using a pure
discovery-based approach. This document is aimed to guide, but not constrain.

The approach presented here actually models one mode of classroom deployment we have used with great success
with children in years 1-6, but especially in years 3&4. We call this “guided bricolage”. Bricolage means tinkering,
where the learner just explores what the code does, but without guidance. Pure bricolage does not really work,
hence the need for guidance. I guess I used this approach when I was teaching physics in the 80’s.

When you type a line of code (as explained below), you must type it exactly (case-sensitive) and most lines will end
with a semi-colon. It is best to type enter when the line is complete. This will set you up for the next line.

Guided Bricolage – Part 1

Guidance – 1

a) Open aScene1.cde

b) Add a big tree add(bigtree,70,10);

Bricolage – 1

Choose some items of scenery, perhaps 4 or 5 and build up a pleasant scene. You can add multiple items, e.g.,
several instances of bigtree.

Guidance – 2

a) Choose a character. I shall choose Pip

b) Now add your character to the scene add(pip,30,10);

c) Now make Pip jump pip.jump();

d) Then find out what this parameter does pip.jump(50);

Bricolage – 2

Now try some other methods, such as pip.spin(); Just add each line of code under the previous one. A good one to
try is pip.flyto(50,10); where you can choose the co-ordinates. Just experiment, try to discover what each method
does.

Guidance – 3

a) Open up aScene2.cde

b) Add some scenery to make a different scene

c) Add a single character of your choice

Bricolage - 3

Make your character move around and behave in a meaningful way, so the animation communicates something
about the character. Perhaps an explorer, or a villain, or a playful friend.

Guided Bricolage – Part 2

Here we shall work with two Actors, and we shall learn how to co-ordinate their actions. This is the hardest aspect of
the engine you will need to master. But there is a simple rule:

If you have two actors in your scene, then you have to tell them both what to do at each stage.
That means you must add two lines of code, one for each actor.

Guidance – 4

a) Open up aScene3.cde and add some scenery

b) Choose two Actors and add them to the scene where you like. I will choose Pip and Flup

c) Let’s make them first do something together so add these two lines of code (remember the rule)

 pip.jump();

 flup.spin();

d) Now, after this, let’s make Pip do something while Flup stands still, perhaps she is watching Pip. So add these two
lines of code

 pip.flyto(50,30);

 flup.rest();

Bricolage – 4

Think about how to get your two Actors to move around and make some other actions, so that the animation makes
sense. Perhaps a game of chase, or two friends coming together, having an argument and then making up.

Changing Scenes

By now you should be confident (i) how to create a coherent scene containing scene objects, (ii) how to use a basic
set of methods to make Actors move-to places and also move-at a place, and (iii) how to code two Actors to have
coordinated actions. My experience is that children at this point like to change the background image. This supports
their creativity and opens up more space for experimentation (bricolage).

The background images are contained in the data folder, and they all have .jpeg format, and they all have width =
900 pixels and height 600 pixels. To access these backgrounds, you simply use their filenames; here’s two ways of
doing it:

a) To change the background but keep all Actors and scenery use

 setScene(“imageName”); e.g. setScene(“NightLake”);

b) To change the background and remove all scenery use

 changeScene(“imageName”); e.g. changeScene(“NightLake”);

It is not possible to remove Actors when changing a scene. You have to make them invisible, then change the scene,
then make them re-appear. Here’s one way of doing it, I shall use the single Actor Flup.

a) flup.hide();

b) setScene(“imageName”);

c) flup.flyto(10,20); This sets the location where you want Flup to be in the new scene

d) flup.show();

Errors you may encounter

Writing an engine to cope with all user errors is not easy, especially when you are not a professional programmer
(like me). But the good news is children do not actually make many errors, in fact their error rate is no greater than
my ‘expert’ undergraduates!

So what to do when there is an error? Errors are reported in the ‘console’ area indicated below. The first thing to
check is that the two pairs of curly-brackets match up (green and yellow below), since these mark the start and end
of two blocks of code. Some children manage to lose a bracket; why is a bit of a mystery, but seems to depend on
the actual computer they are using. It rarely happens when children hit ‘enter’ after writing each line of code.

The engine will report an error by saying Oops – there is a problem in the console. Where possible, the line number
is given.

So what errors can you expect and what should you look for?

1) Mis-typing of a word, e.g. flap.jump(); instead of flup.jump(); for flup.jimp(); instead of flup.jump();

2) Forgetting to end a line with a semi-colon ;

3) There may be problems with the add which should read add(pip,10,30); You may get some of the following which
are incorrect: add.barrel(30,10); add.(pip,10,30); add(pip,1030); and variations on this theme.

X) There are some mistakes children make which are not strictly speaking errors. Here is the most common. They will
correctly type pip.flyto(20,10); but they may incorrectly type pip.walkto(20,10); This should be pip.walkto(20); The
engine interprets the second number as a time to complete the walk in seconds. This will make the animation run
very slowly; if you see this, then look for this error.

Y) When the engine reports it is “Running” in the console for a very long time, and does not report “Run Complete”,
then it is hanging. Do a File, Save then exit the engine (red cross), start it up, load the file and look for a possible
error before running again.

Errors appear in
the console, here

