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Chapter X 
Rotating Oscillators 

X.1 A Brief Introduction 
Here we are looking at oscillators located in a frame of reference 

rotating with an angular speed Ω. We shall consider the following 

cases: (i) A mass tethered with springs free to oscillate on an air-

track, (ii) A simple pendulum, (iii) Two masses on an air-track 

tethered with springs. While these examples may appear 

‘contrived’, rotating oscillators exist in many engineering 

situations, e.g., rotating machinery (of which there is a lot). Think 

of a flywheel in a car, if this is not perfectly balanced then it can be 

modelled as a mass attached to a balanced disk (via a stiff spring). 

. 

X.2 Rotating Frames of Reference 
The mathematics showing how to transform a force F from a 

stationary reference frame to a rotating frame has been presented 

in Chapter X where three fictitious forces were introduced to 

correctly describe the dynamics of a mass in the rotating frame. 

Here we summarize the results. These additional forces are 

illustrated in Fig.1 where we discuss the motion of a glider of mass 

m on an air track rotating about its centre. 

 
Figure 1. The three fictitious forces experienced in a rotating frame of reference. Note that the Euler 
force originates from a change in rotation speed. 

 
When the glider is stationary, and the table is rotating with constant 

angular speed 𝜔 then the glider experiences a radially outward-
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directed centrifugal force of magnitude 𝑚𝜔2𝑟 where r is its 

distance from the rotation centre. If the glider has a radial velocity 

v then it experiences the second fictitious force, the Coriolis force 

in the direction shown, with magnitude 2𝑚𝜔𝑣. Finally, if the 

table’s angular speed is increasing, the glider experiences a third 

fictitious force, the Euler force of magnitude 𝑚�̇�𝑟. Note that this 

is the force you may experience on a merry-go-round. Say this 

starts at rest and you are facing at right-angles to its radius and 

someone starts turning the merry-go-round, then you experience a 

force pushing you backwards, and you compensate by leaning 

forward. 

Which of these forces are relevant for our discussion below? Well, 

only the centrifugal force, since we design the mechanics of the 

system to be constrained against both the Coriolis and Euler forces. 

For example, the glider on the air track is able to resist motion at 

right angles to its length (up to some limit of course). 

X.3 Single Mass Single Spring 

X.3.1 Symmetric Apparatus 
The system is sketched in Fig.2(a) where we have a single glider 

of mass m and a couple of springs each with stiffness k. Clearly, 

we have a simple harmonic oscillator here since the springs provide 

a restoring force. The system ODE is simply, for any displacement 

x from the centre origin 

𝑚�̈� = −2𝑘𝑥      (1) 

and the frequency of oscillation is 

𝜔2 =
2𝑘

𝑚
            (2) 

When the supporting table is rotating with constant angular speed 

Ω then we have an additional centrifugal force of magnitude 

𝑚𝜔2𝑟 Fig.2 (b) 
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Figure 2. (a) Left shows a non-rotating glider attached to two springs. 
(b) Right shows displacement and forces when the air track is 
rotating.  

 

The ODE now reads 

𝑚�̈� = −2𝑘𝑥 + 𝑚Ω2𝑥    (3) 

         = −(2𝑘 − 𝑚Ω2)𝑥    (4) 

and we see that the system still shows harmonic motion about the 

centre of rotation, but now with frequency 

𝜔2 =
2𝑘

𝑚
− Ω2           (5) 

so as the table rotation speed increases, the glider frequency 

decreases, until it becomes zero at a value Ω2 = 2𝑘/𝑚. This is a 

critical point, any increase in rotation speed would result in the 

centrifugal force exceeding any possible spring force and the 

apparatus would fail. 

X.3.2 Offset Mass 
If we have two unequal spring constants, then the equilibrium 

position of the glider is offset from the centre of rotation shown in 

Fig.3. The equation of motion of the glider is 

𝑚�̈� = −(𝑘1 + 𝑘2)𝑥 + 𝐿(𝑘2 − 𝑘1) + 𝑚𝛺2𝑥       (6) 

If there are no oscillations (perhaps they have been damped out) 

then the glider will be at rest at the equilibrium position 

𝑥𝐸𝑞𝑢 = 𝐿
𝑘2 − 𝑘1

𝑘1 + 𝑘2
              (7) 
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Let’s look for a solution of the form 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) + 𝐶                  (8) 

with initial conditions 𝑥(0) and �̇�(0) = 0. Substitution of eq.8 into 

eq.7 and making use of the initial conditions, it is straightforward 

to obtain the solution 

 

             𝑥(𝑡) = [𝑥(0) − 𝐶] cos 𝜔𝑡 + 𝐶           (9𝑎) 

with 

𝐶 =  
𝐿(𝑘2 − 𝑘1)

(𝑘1 + 𝑘2 − 𝑚Ω2)
            (9𝑏) 

 

𝜔2 =
(𝑘1 + 𝑘2)

𝑚
− Ω2          (9𝑐) 

 

 

 
Figure 3. Equilibrium position of the mass is offset from the rotation 
centre due to two different spring constants. 

 

This is all interesting and we can see some interesting things going 

on. First, it’s clear that (𝑘1 + 𝑘2) is an important quantity. If this 

is much larger than 𝑚Ω2 then the equilibrium position approaches 

the value from eq.7, and the frequency of oscillation approaches 

the natural frequency of the mass-spring. Here the effect of the 

springs outweighs the effect of rotation. 

Conversely for high values of Ω rotation becomes dominant, and 

as Ω approaches its critical value, both offset and oscillation period 

tend to infinity, see Fig.4. 
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Figure 4. 

Also the amplitude tends to minus infinity. 

If we hold (𝑘1 + 𝑘2) constant but allow the difference to vary, then 

the offset increases with the difference (𝑘2 − 𝑘1), and of course 

increases as rotation speed is increased. 

Finally, it’s easy to check that the glider can never cross the centre 

of rotation but will oscillate between 𝑥(0) and 2𝐶 − 𝑥(0) with an 

amplitude 𝑥(0) − 𝐶. 

X.4 Pendulum on Rotating Table 
This scenario is similar to the one just discussed where we have a 

simple pendulum suspended from a stand situated on a rotating 

table. Two configurations spring to mind, first where the 

suspension point is co-axial with the centre of rotation, and the 

second where it is offset. Both configurations are shown in Fig.5. 

Of course we need only to analyse the second configuration since 

the first is a special case. Here the long red dashed line shows the 

axis of rotation. 
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Figure 5. Two variants of a rotating pendulum: Left shows the pivot 
point lies on the axis of rotation. Right shows the case where the pivot 
point has some offset. 

 

For the case on the right, we have the torques around the centre of 

rotation coming from the gravitational and centrifugal forces 

𝜏𝑔𝑟𝑎𝑣 = −𝑚𝑔𝐿 sin 𝜃           (10) 

𝜏𝑐𝑒𝑛𝑡 = (𝑚Ω2 𝐿 sin 𝜃 + 𝑚Ω2𝐿′)𝐿 cos 𝜃     (11) 

Invoking the standard simplification sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1 for 

small angles, we obtain the equation of motion of the offset 

pendulum. 

�̈� = (Ω2 −
𝑔

𝐿
) 𝜃 + (

𝐿′

𝐿
) Ω2      (12) 

from which we deduce the oscillation frequency 

𝜔2 =
𝑔

𝐿
− Ω2         (13) 

and we immediately see one effect of rotation is to reduce the 

pendulum’s frequency. If we steadily increase the frequency then 

we shall reach the point where Ω = √𝑔 𝐿⁄  when the pendulum 

ceases to oscillate. 

To obtain the analytical solution to eq.12 we proceed as in the case 

of the oscillating mass with the trial solution 𝜃(𝑡) = 𝐴 cos(𝜔𝑡 +

𝜑) + 𝐶 which yields the following results 
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𝜃(𝑡) = [𝜃(0) − 𝐶] cos 𝜔𝑡 + 𝐶    (14𝑎) 

 

             𝐶 = −
Ω2𝐿′

Ω2𝐿 − 𝑔
                 (14𝑏) 

 

 

which shows us that both the rotational speed and offset influence 

both the oscillation amplitude, and the average angular 

displacement of the bob. Eqs.14 shows that the pendulum 

behaviour is a rich mix of the rotational speed, the offset and the 

initial pendulum angle. Let us plan an investigation and take the 

offset 𝐿′ as our independent variable. Two questions spring to 

mind, first how big does 𝐿′ need to be so the pendulum just avoids 

passing back through the vertical. From eqs.14 we find the 

following relation 

𝐿′ =
1

2
𝜃(0) (

𝑔

Ω2
− 𝐿)           (15) 

Which fixes the required offset. Second, we ask is there an offset 

where the amplitude is zero? The answer is yes, and the value of 

offset 𝐿′ is just the double of 𝐿′ obtained from eq.15. Here’s a plot 

of some solutions for various values of 𝐿′. The system parameters 

are 𝐿 = 2.5𝑚, Ω = 1.5 𝑟𝑎𝑑/𝑠. 

 
Figure 6. Trajectories of the rotating pendulum. Figures show the 
amount of offset (m). 
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You can see on how increasing the offset reduces the amplitude 

and lifts the mean pendulum angle, so it stops passing through the 

vertical. Ultimately the amplitude changes sign. 

But there is a bit of a problem. In our rush to obtain a nice simple 

mathematically analytical solution, we have actually thrown away 

some important physics. Just think about a rotating pendulum 

which is not oscillating. Surely even without an offset, there will 

be cases where it will rotate with a constant offset angle. Let’s see 

what has gone wrong. 

We’ll take the case of the pendulum without offset and write down 

its equation of motion without assuming sin 𝜃 ≈ 𝜃, which is the 

origin of the problem. 

�̈� = Ω2 sin 𝜃 cos 𝜃 −
𝑔

𝐿
sin 𝜃         (16)     

This can be solved for equilibrium solutions 𝜃𝑒𝑞𝑢 

𝜃𝑒𝑞𝑢 = cos−1 (
𝑔

Ω2𝐿
)                  (17) 

and these can only exist if the pendulum rotates fast enough 

Ω > (𝑔 𝐿⁄ )                     (18) 

So we have indeed found that the pendulum can have a constant 

offset without its axis of rotation having an offset. A diagram 

showing equilibrium angles as a function of rotation speed is 

shown in Fig.7. 

Now we must ask ourselves if there could be any other 

consequences of the simplification on the physics. Well there might 

be since we have seen the limit on Ω in eq.18 before. Here we are 

told that the pendulum can have a constant offset if the rotation 

speed exceeds this limit, and our previous simplified analysis 

demonstrated that there could be no oscillations above this limit. 

Well, perhaps the simplified analysis has lost some more physics. 

So let’s try to derive a non-simplified expression for the oscillation 

frequency. 

We know that 𝜔 = √−𝑑�̈� 𝑑𝜃⁄   where this is evaluated at 

equilibrium angles 𝜃𝑒𝑞𝑢 and from eq.16 we find  

𝜔2 =
𝑔

𝐿
cos 𝜃𝑒𝑞𝑢 − Ω2(2 cos2 𝜃𝑒𝑞𝑢 − 1)           (19) 
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then substituting eq.17 and after a little algebra we find 

𝜔2 = Ω2 − (
𝑔

𝐿Ω
)

2

                  (20) 

This proves that the pendulum can oscillate when it is at an angle 

above the critical angle, but the oscillations have a different 

frequency characteristic than below the critical angle. Figure 8 

provides a summary of this for a pendulum of length L = 2.5m. 

 
Figure 7. Equilibrium angles for rotation pendulum as a function of 
speed of rotation, showing a critical value. 

We can now understand the behaviour of the oscillations starting 

from zero rotation speed. At first the pendulum oscillates about the 

vertical with a frequency √𝑔 𝐿⁄  as expected. As the rotation speed 

increases, the pendulum’s frequency decreases and becomes zero 

at the critical speed √𝑔 𝐿⁄ . At this point the pendulum starts to 

assume a constant offset with frequency close to zero, and as the 

rotation speed increases, so does the pendulum’s frequency. 

A plot of pendulum period following the above theory, with some 

experimental (simulation) data is shown in Fig.8 
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Figure 8. Dependence of oscillation period on rotation speed above 
and below the critical point. Circles show data from simulations. 

 

The lines (theory) clearly show the different frequency behaviour 

below and above the critical rotation speed. A plot of oscillation 

amplitude dependence on rotation speed for some simulation 

investigations (Fig.9) shows a dramatic increase in amplitude as Ω 

passes its critical value. 

 
Figure 9. Dependence of pendulum oscillation angle on rotation 
speed. Circles show simulation data points, the green line is an 
interpolation. 

 

It may also be useful to look at some actual simulated trajectories 

for a number of  Ω values. Striking is the non-harmonic form of the 

trajectories. The period is large near the critical point and decreases 

as Ω is increased. Interestingly the pendulum returns to its vertical 
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position for all trajectories, and for higher values of Ω its average 

angle is almost horizontal. 

 
Figure 10. Simulation trajectories for various rotation speeds. Need to 
label figure. 

 

X.5 Rotating Double Mass with Three Springs 
Let’s build a more complex system with two equal masses and 

three equal springs arranged like this. Again there is rotation about 

the centre with a specified angular speed Ω, the axis of rotation is 

shown by the dashed line. 

 
Figure 11. Configuration of two masses and three equal springs. Red 
dashed line shows axis of rotation, green dashed lines show initial 
location of masses when there is no rotation. 

 

Writing the displacements of the masses about their static 

equilibrium positions ±𝐿 as 𝑥1 and 𝑥2 it’s straightforward to obtain 

the equations of motion 

𝑚�̈�1 = −𝑘𝑥1 + 𝑘(𝑥2 − 𝑥1) − 𝑚Ω2(𝐿 − 𝑥1)              
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𝑚�̈�2 = −𝑘𝑥2 − 𝑘(𝑥2 − 𝑥1) + 𝑚Ω2(𝐿 + 𝑥2)       (21) 

Let’s attempt to analyse this system by proceeding in a way we 

understand, looking for normal modes of vibration of a similar 

system without rotation. We want to know if normal modes can 

exist with the presence of rotation. It’s useful first to conduct a 

short thought experiment to crystallize (or challenge) our thinking. 

Let’s assume the existence of normal modes shown in Fig.12, the 

symmetric mode where the masses move in opposite directions, and 

the antisymmetric mode where they move in the same direction. 

Now for the symmetric mode, both masses will have the same 

distance from the axis of rotation, so the centrifugal terms will be 

equal and opposite. So the assumption that this mode exists is a 

good one. Now for the antisymmetric mode, since the masses are 

at different distances from the rotation axes, then their centrifugal 

forces will be different. The question is, can the springs 

compensate for this. We suspect they can but need to perform some 

analysis to prove this. 

 
Figure 12. Normal modes. Top shows equilibrium positions, centre 
shows the symmetric mode, bottom shows the antisymmetric mode. 

 

Let’s start by writing down the equation for the possible symmetric 

mode after a little cleaning up 

𝑚(𝑥1 − 𝑥2)̈ = −[3𝑘 − 𝑚Ω2](𝑥1 − 𝑥2) − 2𝑚Ω2𝐿    (22) 

and for the possible antisymmetric mode, 

𝑚(𝑥1 + 𝑥2)̈ = −[𝑘 − 𝑚Ω2](𝑥1 + 𝑥2)         (23) 
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These equations do resemble our usual normal mode equations (see 

Chapter X) and we recognize respective high and low oscillation 

frequencies 

𝜔𝑠𝑦𝑚
2 =

3𝑘

𝑚
− Ω2     (24𝑎) 

𝜔𝑎𝑛𝑡𝑖
2 =

𝑘

𝑚
− Ω2     (24𝑏) 

which is encouraging. But the normal mode equations themselves 

are not symmetric, we have a constant forcing term −2𝑚Ω2 in 

eq.22. But these two equations are decoupled, so they can be solved 

independently. To do this, let’s introduce two new variables 

𝑧𝑆𝑦𝑚 = 𝑥1 − 𝑥2 and 𝑧𝐴𝑆𝑦𝑚 = 𝑥1 + 𝑥2 whose names give away 

what we have in mind. Let’s re-write eqs.22,23 as 

𝑚�̈�𝑆𝑦𝑚 = −[3𝑘 − 𝑚Ω2]𝑧𝑆𝑦𝑚 − 2𝑚Ω2𝐿    (25) 

𝑚�̈�𝐴𝑆𝑦𝑚 = −[𝑘 − 𝑚Ω2]𝑧𝐴𝑆𝑦𝑚                      (26) 

Let’s take eq.25 and try a solution of the form 

𝑧𝑆𝑦𝑚(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) + 𝐶         (27) 

Substituting into eq.25, after a little algebra we find the following 

results 

𝐶 =  −
2𝑚Ω2𝐿

(3𝑘 − 𝑚Ω2)
         (28) 

and 

𝜔𝑆𝑦𝑚
2 =

3𝑘

𝑚
− Ω2      (29) 

we know the latter well. Now let us invoke the initial conditions 

𝑧𝑆𝑦𝑚(𝑡 = 0) = 𝑧𝑆𝑦𝑚(0) and �̇�𝑆𝑦𝑚(𝑡 = 0) = 0 which helps us find 

the phase 𝜑 and amplitude A. The final solution becomes 

𝑧𝑆𝑦𝑚(𝑡) = (𝑧𝑆𝑦𝑚(0) − 𝐶) cos(𝜔𝑆𝑦𝑚𝑡 + 𝜑) + 𝐶         (30) 

Proceeding in a similar fashion for 𝑧𝐴𝑆𝑦𝑚(𝑡) we find the solution 

𝑧𝐴𝑆𝑦𝑚(𝑡) = 𝑧𝐴𝑆𝑦𝑚(0) cos 𝜔𝐴𝑆𝑦𝑚𝑡               (31) 

With 
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𝜔𝐴𝑆𝑦𝑚
2 =

𝑘

𝑚
− Ω2      (32) 

 

So we have found the existence of two normal modes with high 

and low frequencies as expected. How do we select the initial 

displacements to excite either the symmetric or antisymmetric 

modes? Eq.30 gives us the condition for the non-existence of the 

symmetric mode 

𝑧𝑆𝑦𝑚(𝑡) = 0 ⇒ 𝑧𝑆𝑦𝑚(0) = 𝐶                 

𝑥2(0) = 𝑥1(0) − 𝐶                    (33) 

and similarly for the symmetric mode we have for the non-

existence of the antisymmetric mode 

𝑧𝐴𝑆𝑦𝑚(𝑡) = 0 ⇒ 𝑧𝐴𝑆𝑦𝑚(0) = 0 

𝑥2(0) = −𝑥1(0)                           (34) 

Here the idea is that we have free choice of 𝑥1(0) which then 

determines the value of 𝑥2(0) for both cases.  

Finally, what are the equilibrium states (e.g., when any oscillations 

have been damped). From eqs.30,31. These are simply 

 �̅�1 = 𝐶 2                                 ⁄  

�̅�2 = −𝐶 2                      (35)⁄  

The equilibrium configuration is shown in Fig.13 

 
Figure 13. Equilibrium states: (a) Top without rotation, (b) Bottom 
with rotation. 
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From eqs.30,31 we can extract expressions for 𝑥1(𝑡) and 𝑥2(𝑡) 

𝑥1(𝑡) =  [𝑥1(0) −
𝐶

2
] cos 𝜔𝑡 + 

𝐶

2
            (36) 

𝑥2(𝑡) =  [𝑥2(0) +
𝐶

2
] cos 𝜔𝑡 − 

𝐶

2
            (37) 

where there seems to be some nice symmetry going on. The initial 

conditions determine, of course whether we excite either pure 

mode, or a superposition of two modes in various quantities. Of 

course this mix will always contain components of two frequences 

𝜔𝑆𝑦𝑚 and 𝜔𝐴𝑆𝑦𝑚. 

Let’s have a look at an example of symmetric and antisymmetric 

modes for a system with parameters 𝑚1=1kg, k = 39.478 N/m, L = 

0.5m, Ω=5rad/sec. The symmetric solution is shown in Fig.14. 

Note that the trajectories are shown about the rotating equilibrium 

points. We applied initial conditions 𝑥1(0) = −0.4, 𝑥2(0) = 0.4. 

The amplitudes of oscillation are 𝐴1 = 𝑥1(0) − 𝐶/2 and 𝐴2 =

𝑥2(0) + 𝐶/2 which are ±0.2662 respectively. 

 
Figure 14. Example of system behaviour for the symmetric mode. 

 

The antisymmetric mode is shown in Fig.15. We applied initial 

conditions 𝑥1(0) = 0.1, and 𝑥2(0) = 𝑥1(0) − 𝐶 = 0.3676. The 

amplitudes of oscillation are 𝐴1 = 𝑥1(0) − 𝐶/2 and 𝐴2 = 𝑥2(0) +

𝐶/2 which are ±0.2338 respectively. 
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Figure 15. Example of system behaviour for the antisymmetric 
mode. 

 

Results of investigations of the effect of Ω on the equilibrium 

locations of the gliders for symmetric and antisymmetric modes are 

shown in Fig.16. 

 
Figure 16. Simulation results of equilibrium locations for symmetric 
and antisymmetric solutions (circles) with theoretical solution. 

 

Also effects of  Ω on the glider period for both modes are shown in 

Fig.17. This material would make a good investigation. 
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Figure 17. Simulation results of oscillation periods for symmetric and 
antisymmetric solutions (circles) with theoretical solution. 

 


