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Chapter X 
Kapitza Pendulum 

X.1 A Brief Introduction 
Galileo’s pendulum has been around for hundreds of years, and we 

are all quite familiar with its behaviour, oscillating around an upper 

suspension point. What is truly amazing is that when the 

suspension point is made to oscillate vertically with a frequency 

much higher than the pendulum’s natural frequency, then the 

pendulum can oscillate but in a vertical orientation, above its pivot 

point. This is known as Kapitza’s pendulum, and the PhysLab 

incarnation is shown in Fig.1. 

Do not confuse this with a vertical pendulum mounted on a cart 

which can move horizontally, such as a Segway, the stabilization 

is produced by a different mechanism. The material below is quite 

mathematical, though we shall attempt to emphasise the physics. 

X.2 Equation of Motion 

X.2.1 Simple Starting point considering torques. 
Here we take a simple approach to deriving the equation of motion, 

a more rigorous approach is presented at the end of the chapter 

using Lagrange’s formulation. For the moment consider the two 

pendulums shown in Fig.2 . 

          
Figure 2. 

Let’s take Galileo’s pendulum on the left. The downward force on 

the bob due to gravity produces a torque around the pivot point 

Figure 1 
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𝑚𝑔𝐿 sin 𝜃              (1) 

and so the equation of motion for the bob’s rotation becomes 

𝑚𝐿2�̈� = −𝑚𝑔𝐿 sin 𝜃              (2) 

which simplifies to the expression you know well 

�̈� = −
𝑔

𝐿
sin 𝜃              (3) 

which of course shows that gravity acts to reduce 𝜃 at this point. 

For Kapitza’s pendulum on the right we have a similar result 

�̈� =
𝑔

𝐿
sin 𝜃              (4) 

showing that gravity increases 𝜃 at this point, the pendulum seeks 

to hang down. 

How let’s introduce a vertical oscillation of the pivot point, Fig.3 

where 𝑎(𝑡) is a small and high frequency oscillating 

displacement. 

 
Figure 3. 

Now we can jump to a non-inertial reference frame associated with 

the oscillating axis, we can see that gravity g is supplemented by 

an additional acceleration due to the oscillating (and therefore 

accelerating pivot). We can then replace g in the equation of motion 

with 

−𝑔 − �̈�(𝑡)                     (5) 

 This expression is general, if we take harmonic excitation of the 

form 𝑎(𝑡) = 𝐴 cos Ω𝑡 then the augmented gravity becomes  

−𝑔 + Ω2 𝐴 cos Ω𝑡                     (6) 
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and inserting into eq.4 our equation of motion becomes 

�̈� =
𝑔

𝐿
sin 𝜃 − Ω2  

𝐴

𝐿
cos Ω𝑡 sin 𝜃            (7) 

This is the equation we must solve. 

X.2.2 A Tale of Two Time scales 
There are tools which we may draw from out mathematical 

armoury to deal with eq.7 but things get a little easier and more 

interesting if we look at the physics of the Kapitza pendulum. Long 

before Kapitza did his analysis, there were lots of experimental 

results available, including graphs of the bob’s motion. We shall 

see the importance of experimental work in understanding physics 

phenomena. 

The basic experimental result is shown in Fig.4 which comes from 

a PhysLab simulation, and which may be directly observed in the 

simulation 

 
Figure 4. 

The bob has been given an initial displacement from the vertical of 

5𝑜 and is seen to be merrily oscillating around the vertical with this 

amplitude, and a certain frequency of vibration (close to its natural 

frequency). But there is an additional oscillation superposed on 

this, and this has two important properties (i) it has a much higher 

frequency and (ii) it has a much smaller amplitude. Both of these 

properties are essential to understanding how small-amplitude 

high-frequency vertical oscillations of the pivot can stabilize the 

vertical pendulum. The second of these properties translates to the 

condition 𝐴 ≪ 𝐿 since L sets the length scale of the problem. 
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Let’s start work on eq.7 with what we have just said in mind. Let’s 

try a solution of the form 

𝜃(𝑡) = 𝜃0(𝑡) + 𝜑(𝑡)        (8) 

where 𝜃0(𝑡) is slow and large and 𝜑(𝑡) is fast and small. First, we 

have 

sin(𝜃0 + 𝜑) ≈ sin 𝜃0 + 𝜑 cos 𝜃0               (9) 

by Taylor expansion or using trig. identities. Substituting in eq.7 

we have 

�̈�0 + �̈� +
Ω2𝐴

𝐿
cos Ω𝑡 sin 𝜃0 +

Ω2𝐴

𝐿
cos Ω𝑡 𝜑cos 𝜃0 −

𝑔

𝐿
sin 𝜃0 −

𝑔

𝐿
𝜑cos 𝜃0

= 0   (10) 

 

Now at high frequencies we have Ω2𝐴 ≫ 𝑔 so we can ignore the 

last two terms involving g. We can also ignore �̈�0 since 𝜃0 is slow 

and so its second derivative is small, compared with �̈� which is 

large since 𝜑 is fast. We can also ignore the 4th term which contains 

𝜑 which is small. We therefore end up with 

�̈� ≈ −
Ω2𝐴

𝐿
sin 𝜃0 cos Ω𝑡        (11) 

Now since 𝜃0 is slow, we can take sin 𝜃0 as pretty much constant 

over one cycle of 𝜑 so we can integrate eq.11 directly to obtain an 

expression for the fast variable, 

𝜑(𝑡) =
𝐴

𝐿
cos Ω𝑡 sin 𝜃0       (12) 

Before moving on, let’s do a sanity check, recalling our 

assumptions and checking that eq.12 agrees with these. We 

assumed that 𝐴 ≪ 𝐿 and that 𝜑 was small. This is clearly born out 

in the first factor of eq.12. 

Now let’s return to eq.10 and now extract the solution for the slow 

variable 𝜃0. We proceed by taking a time average of the quantities 

over a period of time equal to the period of the fast oscillations. 

The idea is that we don’t expect the fast oscillations to affect the 

slow oscillations in any significant detail since these are small. 

First we remove the term �̈� since this is sinusoidal with an average 

of zero. The third term is removed since cos Ω𝑡 has a zero average. 

The final term is removed since this contains 𝜑 which has an 



Chapter X Kapitza Pendulum  5 
 

average of zero. The fourth term contains cos Ω𝑡 and 𝜑 which 

varies as cos Ω𝑡. We end up with 

�̈�0 + 0 + 0 +
Ω2𝐴

𝐿
cos 𝜃0

𝐴

𝐿
sin 𝜃0〈cos2 Ω𝑡〉 −

𝑔

𝐿
sin 𝜃0 − 0

= 0 (13) 

and finally 

�̈�0 +
Ω2𝐴2

2𝐿2
cos 𝜃0 sin 𝜃0 −

𝑔

𝐿
sin 𝜃0 = 0   (14) 

 

This equation is formidable since it cannot be integrated directly, 

but we can introduce the usual small-angle approximations 

sin 𝜃 ≈ 𝜃 −
1

6
𝜃3             sin 𝜃 cos 𝜃 ≈ 𝜃 −

2

3
𝜃3       (15) 

where we have kept terms up to order 3. We finally end up with 

�̈�0 + (
Ω2𝐴2

2𝐿2
−

𝑔

𝐿
) 𝜃0 + (

1

6

𝑔

𝐿
−

Ω2𝐴2

3𝐿2 ) 𝜃0
3 = 0               (16) 

X.2.3 Oscillation Frequencies and Bifurcation Curves 
Our eq.16 provides some very useful information about our system. 

If we assume a solution of the form, 𝜃(𝑡) = 𝐴𝑆𝑙𝑜𝑤 cos 𝜔𝑡 then we 

find the slow frequency of oscillation is 

𝜔2 =
Ω2𝐴2

2𝐿2
−

𝑔

𝐿
            (17) 

and there is a limit on Ω𝐴 for harmonic oscillations 

(Ω𝐴)2 > 2𝑔𝐿           (18) 

To check this against our original assumptions we can better write 

this as 

Ω2𝐴

𝑔
.
𝐴

𝐿
> 2             (19) 

Looking at the first term, we assumed that Ω2𝐴 > 𝑔 so this term is 

large, and for the second term we assumed 𝐴 ≪ 𝐿 so this term is 

small. This means that to obtain stable oscillations, we expect to 

need large values of Ω which satisfy 
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Ω >
√2𝑔𝐿

𝐴
                    (20) 

We can also extract the bifurcation equation from eq.16 looking for 

equilibrium solutions at a general angle. We find a pitchfork 

bifurcation, but the branches are unstable, so there are only two 

stable points for the Kapitza pendulum, for 𝜃 = 0, 𝜋. 

𝜃0𝐸𝑞𝑢
2 = −

(3Ω2𝐴2 − 6𝑔𝐿)

(2Ω2𝐴2 − 𝑔𝐿)
                 (21) 

A similar analysis can be performed about the lower stable point, 

the Galilean pendulum. The frequency of low-amplitude 

oscillations here is 

𝜔2 =
Ω2𝐴2

2𝐿2
+

𝑔

𝐿
            (22) 

Measured frequencies as a function of excitation amplitude A for 

both upper and lower solutions from simulations in PhysLab are 

shown in Fig.5 together with the theoretical expressions from 

equ.17 and equ.22. 

 
Figure 5. 

 

We also show the results of a simulation study for parameters \l = 

0.2, A = 0.02, Ω = 110 for an initial displacement of 1 degree. We 

model the low frequency component as a cosine curve of this 

amplitude and period determined by eq.17 and subtract this from 
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the solution to reveal the fast component (green). It’s amplitude 

agrees with eq.12 to within an order of magnitude. 

 
Figure 6. 

 

Our analysis so far has been concerned with small-amplitude 

oscillations. Now we turn to exploring to what extent we can 

understand large-amplitude oscillations. 

 

X.3 Large Amplitude Solutions 
Our analysis at the end of section X.2.2 and in section X.2.3 

focussed on small-amplitude oscillations.  Here we are interested 

in extending the results obtained. The question is simple, we know 

the frequency of the small-amplitude oscillations, but we were not 

given any information about the amplitude of those oscillations. 

Not surprising since for a linear oscillator, the amplitude depends 

on the initial conditions. We can do better here, since the Kapitza 

pendulum is certainly nonlinear. 

We turn to formulating our system in terms of energy. Why 

energy? Well unlike local approximations, energy equations do not 

have to involve approximations and are able to give us a more 

global view of our system behaviour. 

Let’s reproduce eq.14 to make our argument clear. 
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�̈�0 +
Ω2𝐴2

2𝐿2
cos 𝜃0 sin 𝜃0 −

𝑔

𝐿
sin 𝜃0 = 0   (23) 

As we mentioned we cannot integrate this directly since we have 

transcendental functions present. But in situations like this where 

we have to integrate a term like �̈�0 we can use the powerful 

equivalence 

�̈�0 =
𝑑

𝑑𝜃0
(

1

2
�̇�0

2)                 (24) 

So eq.23 becomes 

1

2
�̇�0

2 + ∫ (
Ω2𝐴2

2𝐿2
cos 𝜃0 sin 𝜃0 −

𝑔

𝐿
sin 𝜃0) 𝑑𝜃0 = 0       (25) 

In effect we have transformed integration over time into integration 

over 𝜃0. This is straightforward where we obtain 

1

2
�̇�0

2 +
Ω2𝐴2

2𝐿2

sin2 𝜃0

2
+

𝑔

𝐿
cos 𝜃0 = 𝑐𝑠𝑡1     (26) 

The first term reminds us of  kinetic energy so let’s make this 

explicit, remembering that linear velocity is just 𝐿�̇�0 

1

2
𝑚𝐿2�̇�0

2 +
𝑚Ω2𝐴2

4
sin2 𝜃0 + 𝑚𝑔𝐿 cos 𝜃0 = 𝑐𝑠𝑡2     (27) 

So this is an expression for the total energy of our system, the first 

term is the kinetic energy, the third term is the usual gravitational 

potential energy of a free pendulum (A=0), but the second term is 

an extra potential energy term due to the excitation. 

So we have discovered an effective potential (not potential 

energy, we remove m) which describes the large-amplitude 

motion of the pendulum, as follows, 

𝑈(𝜃0) =
Ω2𝐴2

4
sin2 𝜃0 + 𝑔𝐿 cos 𝜃0          (28) 

which will define the limits of the oscillation angle. To make this a 

little more concrete, let’s take the case of a pendulum of length 

L=0.8 driven by Ω = 230 and A = 0.04 then the plot of potential 

against angle is shown in Fig.7 We see the potential well keeps the 

bob well constrained to a limit of around 80 degrees. This is a huge 

angle 
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Figure 7. 

There are three parameters which define this potential, L, A, and Ω. 

In investigating, or designing, a system, we would normally fix L 

which defines the length scale for the system, then see how the 

potential varies with driving amplitude and driving frequency. 

Figure 8 shows a plot of potential for L=0.8m and Ω = 230 rad/s. 

As A is increased the hills surrounding the valley become larger 

and further apart. There is also a critical drive amplitude which 

must be met for the vertical oscillation to be stable. 

 
Figure 8. 

 

Looking mathematically for the peaks of the potential hill, the 

first derivative of 𝑈(𝜃0) tells us that the peaks are located at 

𝜃0 = cos−1 (
2𝑔𝐿

Ω2𝐴2
)                (29) 
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which leads to the following condition 

(Ω𝐴)2 > 2𝑔𝐿           (30) 

which we have seen before (eq.18). 

X.4 Running Orbits 
 


