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X.1.1 First Experiments 
(1) Preparation 

In this experiment the base of the pendulum oscillates vertically 

at a high frequency, and the pendulum becomes inverted and 

performs angular oscillations around the vertical. 

(a) What would you expect to see if the vertical oscillation 

frequency is steadily reduced? 

(b) Use the given values for parameters L ‘length’ and A 

‘ampExcitn’ to calculate the critical angular rotation speed Ω. 

(c) Calculate the maximum angle allowed for stable oscillations 

for rotational speeds 230, 210 and 200 r/s. 

 

(2) Guided Data Collection 

(a) Activate the experiment and press P to bring up the 

parameters. Check that Ω ‘OmegaExcitn’ is set to 230. Press 

Done. 

(b) Press I to bring up the initial conditions. Make sure ‘initial 

theta’ is set to 10 degrees (not a small value). Press Done. 

(c) Press F1 to run the experiment. Convince yourself that the bob 

displays small-amplitude high-frequency vertical oscillations 

superposed on large-amplitude low-frequency sideways 

oscillations. 

(d) Observe the slow oscillations for a few cycles and note down 

an estimate of their period. Compare this with the period readout 

on the HUD. 

(e) Press F3 to stop the experiment and restore to the initial 

conditions you have set. 

(f) Now press P to bring up the parameters and set Ω to 210. 

(g) Now press F1 to run the experiment for a few cycles and again 

note down a period estimate also the value from the HUD. 

(h) Repeat appropriate steps to gather data for Ω set to 200 (which 

is just above the critical Ω). When you are done press X to 

disengage the experiment. 

 

(3) Looking at the logged data in Octave. 

(a) Press O to open up Octave and you will see plots of 𝜃 and 𝜃̇ 

against time. Make sure you can see both slow and fast 

oscillations superposed. 

(b) Take measurements on the various sections of the 𝜃 plot to 

calculate the oscillation period for each value of Ω. Compare 

these with your values recorded earlier. Close down Octave 
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(c) Navigate to the folder Octave | Kapitza and open the Octave 

script ‘PeriodChecks.m’. Enter your data Ω, T in the area 

indicated.  

(d) When you run the script, your experimental data will be 

plotted on the theoretical curve obtained from the ‘Slow 

Frequency’ expression in the box above. 

(e) Think carefully about what you see. Can you explain why 

some experimental points look OK, but one certainly is not? 

 

(4) Repeating for a small initial angle 

You probably realized that the lack of agreement was because the 

initial angle chosen was large, and the small-amplitude theory does 

not handle this. So repeat (3) with an initial angle of 1 degree and 

see if you get any better agreement. You must set this angle in the 

initial conditions dialogue box. 

 

(5) Pause for reflexion 

Make short notes for yourself on what you have learned so far. 

 

X.1.2 Investigations 
(6) Independent mini-Investigation - 1 

The plot below shows the stability region in 𝐴 − Ω space. Choose 

pairs of 𝐴 and Ω where the product 𝐴Ω is about the same. Are 

there any differences in the form of the pendulum trajectory? 
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(7) Independent mini-Investigation - 2 

Gather some data for values of Ω below the critical value. Think 

carefully and choose some interesting values for Ω. Use Octave 

plots to interpret what is going on. 

 
(8) Investigation 

There is an extensive literature on the Kapitza pendulum including 

numerical simulations which PhysLab could replicate. Folk have 

found interesting solutions such as (i) ‘looping’ behaviour where 

the bob executes repeated rotation, (ii) superposition of rotations 

and oscillations, and of course, (iii) chaos. 

 

In this sort of situation where there are several parameters, the trick 

is to choose one which is likely to lead to these interesting 

solutions. You will probably need to try a few things out before 

committing to using one principal parameter. But it’s probably best 

not to think of initial conditions as a parameter, these should be 

held fixed, at least during the planned investigation. 
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X.2 Rotating Spring-Mass Oscillator 
 

X.2.1 First Experiments 
(1) Observing the Oscillations without Rotation 

(a) When the table is not rotating, the mass will oscillate. How do 

you expect the behaviour of the mass to change as the table is made 

to rotate, and its angular velocity progressively increased? 

(b) Press P and check that the parameters are set to their default 

values as shown in the box. 

(c) Press I and set initial X to 0.25 

(d) Press F1 to run and observe the oscillations and make a mental 

note of their period from the HUD. 

𝑚𝑥ሷ = −2𝑘𝑥 +𝑚Ω2𝑥 

𝜔2 =
2𝑘

𝑚
−  Ω2 

equation of motion 

oscillation frequency 
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(e) Press F2 to reset then press P and increase the values of k1 and 

k2, but keep them equal 

(f) Press F1 and observe the oscillations. Has the period changed 

as you would expect? 

(g) Press F2 then press P and restore k1 = k2 = 10. Then press X to 

disengage the experiment. 

(2) Observing the effect of Rotations 

Here you are invited to make direct observations of the oscillator 

as we steadily increase the rotation speed. No need to record any 

data here.  

You can change your viewpoint by pressing L which will toggle 

between inertial and non-inertial reference frames. 

(a) Make sure k1 = k2 = 10, and that initial X is set to 0.25 

(b) Press F1 

(c) Press P, then steadily increase the value of Omega up to its 

critical value of 4.47. No need to pause the simulation between 

changes. 

(d) How does the period of oscillation change with Omega? 

(e) Use the expression for ‘oscillation frequency’ in the box to 

 (i) Calculate the critical value of Omega 

 (ii) Explain your answer to (d) 

(f) Press X to disengage the experiment. 

 

(3) Collecting and plotting data 

Here you will essentially repeat (2) but also note down the 

oscillation period displayed on the HUD 

(a) Make sure parameters are set to k1 = k2 = 10 and Omega = 0. 

(b) Press F1 to start the experiment, then repeat the following 

steps 

 (i) Increase Omega a little 

 (ii) Note down the period from the HUD 

 (iii) Press F2 then increase Omega a little. 

(c) Press X when you are done, then enter your data into the 

Octave script PeriodVsOmega.m which you can find in the 

Octave folder.  

(d) Run this script and your data will appear together with the 

period calculated from the expression in the box. 

 

X.2. Investigation into different stiffnesses 
Here we shall investigate the system when the values of k1 and k2 

are not the same. If the mass starts off at the origin, then one spring 
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will exert a larger force, so we expect the equilibrium position of 

the spring to be offset from the origin. We need to investigate two 

things: (i) How rotation affects the offset, (ii) If the oscillation 

frequency differs from the ‘equal k1,k2’ case. The arrangement and 

revised key expressions are collected together in the box below. 

 

(4) Offset as a function of rotation speed 

Here we shall investigate how the rotation speed Ω affects the 

average distance of the mass from the centre of rotation, this is the 

‘offset’ C. 

(a) Set k1 to 9 and k2 to 11 (so the sum remains the same in the 

first experiments. Now set damping to 0.5. Make sure that Omega 

is set to 0. Set initial X to 0.1. 

(b) Press F1 to start the experiment then repeat the following steps 

 (i) Wait until the oscillations are damped 

(ii) Note down the value of meanX. 

(iii) Increase Omega a little (up to the critical value). 

Solution 

Oscillation frequency 

Offset from centre 

Equation of motion 
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(c) Press X when you are done and enter your data into the Octave 

Script DifferingKs1.m  

(d) Check your data agrees with the theoretical plot. Can you see 

how this is related to the expression given in the box above? 

(e) Can you explain in simple and succinct English why the offset 

behaves as it does 

 

 

(5) Period as a function of rotation speed. 

According to the expression in the box, the oscillation frequency 

does not change as the offset of the mass changes 

(a) Conduct a short investigation to verify this 

(b) Can you explain in simple and succinct English why the 

oscillation frequency is independent of the offset? 
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X.3 Double Potential Well 

equation of motion 

potential 

small amplitude oscilln. frequency 

within well oscillation frequency 

across well oscillation frequency 
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X.3.1 Initial Experiments 
The force and potential curves have been drawn for the default 

parameters. The key parameter here is 𝑘 which fixes the potential 

minima at 𝑥 = ±√𝑘 and the well ‘edges’ at 𝑥 = ±√2𝑘 where we 

define the edge to be the locations where the potential is equal to 

its hump value. You will see from both force and potential curves 

that the origin is an unstable point. 

How do you expect the system to behave if 

 (i) the bob starts close to the bottom of a potential well? 

 (ii) the bob starts close to the top of the potential hump? 

 (iii) the bob starts ‘high up’ on the potential curve? 

 

(1) Exploring the Potential Wells 

(a) Calculate the value of x at the potential minima and near the 

‘edges’. Press I and set initial dispX to locate the bob near the 

centre of a well.  

(b) Press F1 and observe the motion of the bob and its location on 

the hill. 

(c) Leave the simulation running and press I and slowly increase 

the bob’s starting location up to the well ‘edge’. Note how the 

motion of the bob changes. 

(d) Can you explain the change in bob’s behaviour in simple and 

succinct English? 

 

(2) Exploration outside of the Wells 

(a) Continue increasing bob’s starting location up to the largest 

value possible ‘limit’ in the parameter menu. 

(b) Again, can you explain your observations? 

(c) Press X to deselect. 

 

(3) Reading the solution trajectories 

Here we shall work with Octave plots to get a better feeling of 

what is going on with the various trajectories. 

(a) Reselect then set initial dispX to 1.6 so the bob is near the 

bottom of the well and press F1 and run for 3 cycles or so. Press 

F2. 

(b) Now set initial dispX to 1.999 so the bob is near the edge of 

the well and press F1 to run for 3 cycles. Press X to exit. 
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(c) Press O to load up the Octave script DoubleWell.m and 

observe the two trajectory segments. How do the period and 

trajectory shape differ? 

(d) Now look at the velocity segments. How do these differ 

between the segments? 

(e) Can you use your answers to (d) to explain the difference in 

period and trajectory shapes? 

(f) Press X to deselect. 

 

X.3.2 Investigating Large Amplitude Solutions 
Large amplitude solutions are very interesting to study. There exist 

theoretical results which describe these, see the appropriate 

chapter, but these, based on some form of energy balance involve 

approximations. In this section we shall collect some data, periods 

of large amplitude oscillations and see how well the approximate 

theory performs. 

(4) Within-well solutions 

(a) To confine the solution within a single potential well, set init 

DispX to 0.1 and record the period from the HUD when it is stable. 

(b) Repeat, increasing the initial displacement up to near the centre 

of the well which is at √𝑘. 

(c) Enter your data into the Octave script InsideWell_Periods.m 

and have a look at the plots1. Does the change in period with 

amplitude make sense to you? 

(d) Comment on the accuracy of the theory. 

 

(5) Across-Well solutions 

(a) Set the initial DispX to 2.1 and record the period of oscillation. 

(b) Progressively increase the displacement and record the periods. 

Decide yourself how large to make the displacement. 

(c) Enter your data into the Octave script AcrossWells_Periods.m 

and have a look at the plots. The period dependence on amplitude 

is different from that discovered in (4). Does the different 

dependence make sense? 

(d) Again, comment on the accuracy of the theory. 

 

 
1 There are two plots, one is the published He energy balance method. 

The second plot is ours where we have extended the He theory. 
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X.3.3 Deforming the Potential Well 
The effect of the deforming (‘unfolding’) parameter 𝛿 is to change 

the relative depths of the potential wells, but also to shift the 

equilibrium location of the bottom of each well to the right. This 

will change the observed low-amplitude oscillation frequency. We 

are interested in finding out how 𝛿 affects this frequency 

(6) Upper Branch Study 

Let’s look at the upper branch. The expression for frequency in the 

box shows that this depends on 𝑥𝐸𝑞𝑢 the equilibrium position of 

the bob at the bottom of the well. 

(a) Set the value of damping to 1.0 and initial x to 0.1. Press F1 and 

run the simulation so the bob comes to rest at the bottom of the 

well. Note down the equilibrium position 

(b) Now progressively increase 𝛿 and note down the equilibrium 

position for each value. Press X when you are done. 

(c) Insert your values into the Octave script PeriodVsDelta.m 

Now let’s make measurement of the oscillation period. 

(d) Set damping to 0.0 and for each value of 𝛿 

 (i) set initial x to the equilibrium value plus something 

small (e.g. 0.01) to get low-amplitude oscillations. 

 (ii) run the experiment and record the period from the HUD 

𝑚𝑥ሷ = 𝑘𝑥 − 𝑥3 + 𝛿 

𝑉ሺ𝑥ሻ =
1

4
ሺ𝑥2 − 𝑘ሻ2 − 𝛿𝑥 

𝜔2 = −
൫𝑘 − 3𝑥𝐸𝑞𝑢

2 ൯

𝑚
 

equation of motion 

potential wells 

small amplitude 

frequency 
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(e) Now enter these measurements  into the Octave script and run 

the script. Hopefully you will get good agreement with theory. 

(7) Lower Branch Study 

Repeat the above for the lower branch. To get the equilibrium 

positions start with initial x = -0.1 and apply damping. The rest of 

the experiment stays the same 

(8) Understanding the Results 

You should have found that increasing 𝛿 decreases the period for 

the upper branch and increases the period for the lower branch. 

Looking at the shape of the deformed potential well, can you 

suggest why this is, using simple and succinct English? 

 


