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Chapter X 
Spring Pendulum 

X.1 A Brief Introduction 
In its simplest form, the spring pendulum consists of a mass 

attached to a lightweight vertical rod held in position by a spiral 

spring. Clearly the pendulum is inverted, and the system is actually 

an inverted Duffing oscillator, the Duffing oscillator is a much-

loved and well-understood system. Details of the apparatus are 

shown in Fig.1. 

 
Figure 1. Vertical pendulum with spring restoring force. 

 

The mass m can be moved to a particular distance l from the pivot 

point, we take l as our principal system parameter. The system will 

clearly perform oscillations around the vertical. 

X.2 The Simple Spring Pendulum System 

X.2.1 Equations of Motion 
The 2nd-order ODE describing the system dynamics follows by 

considering angular motion around the pivot. We have, where k is 

the spring stiffness and 𝐼 = 𝑚𝑙2 the moment of inertia of the 

pendulum bob 

𝐼�̈� = 𝑚𝑔𝑙 sin 𝜃 − 𝑘𝜃          (1) 

For small 𝜃 we can expand the sin term as usual to obtain 
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�̈� = (
𝑚𝑔𝑙 − 𝑘

𝐼
) 𝜃 −

𝑚𝑔𝑙

6𝐼
𝜃3         (2) 

If we take 𝜃 as very small, i.e. 𝜃 ≪ 1 , and for the case where 𝑘 >

𝑚𝑔𝑙, (which means that the spring dominates over gravity) then we 

obtain the linear system 

�̈� = −𝜔2𝜃                (3) 

which describes oscillations about the vertical with frequency 

𝜔 = √(
𝑘 − 𝑚𝑔𝑙

𝐼
)                (4) 

Then the expression for small 𝜃 becomes 

�̈� = −𝜔2𝜃 −
𝑚𝑔𝑙

6𝐼
𝜃3           (5) 

Using the established language of the Duffing oscillator, the cubic 

term leads to a ‘hard’ spring since the period decreases with 

amplitude. 

Eq.(5) has a single fixed point 𝜃 =0, about there are very small 

oscillations of frequency given by eq.(4). This solution, however, 

is not of particular interest in our study. Much more interesting is 

the case where 𝑘 < 𝑚𝑔𝑙 where gravity dominates over the spring. 

The expression for small 𝜃 now becomes 

�̈� = 𝜎2𝜃 −
𝑚𝑔𝑙

6𝐼
𝜃3            (6) 

where  

𝜎 = √(
𝑚𝑔𝑙 − 𝑘

𝐼
)           (7) 

Clearly this is not a harmonic oscillator since the force due to the 

linear term is positive and therefore not restoring.  

The behaviour of this system can be gleaned by plotting the angular 

acceleration �̈� as a function of 𝜃. This is shown in Fig.2 where we 

have selected m = 1 and k = 4.905 as our standard parameters.  
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Figure 2. Angular acceleration as a function of angle. There are three 
equilibrium values, one unstable (angle is zero) and two stable (angle plus and 
minus about 100 degrees). 

There are three fixed points, an unstable equilibrium at 𝜃 = 0 and 

two stable equilibria. From eq.6 we find these are at 

𝜃𝑒𝑞𝑢 = ±√
6𝐼

𝑚𝑔𝑙
𝜎           (8) 

This means that the bob is never stable in a vertical position but 

must lean to one side or the other. 

Finally, we can use eq.2 to obtain an expression for 𝜃𝑒𝑞𝑢 as a 

function of the physical parameters, m, g, l, and k. 

𝜃𝑒𝑞𝑢 = ±√6 (1 −
𝑘

𝑚𝑔𝑙
)                  (9) 

This is an important expression since it tells us that we can choose 

either k, m, g, or l as our principal parameter for studies 

(independent variable or bifurcation parameter). Our choice is 

further guided by looking at the numerator in eq.(4) and eq.(7) 

which can be zero. We choose l as our principal parameter, and 

therefore identify a ‘critical length’ for our system, 

𝑙𝑐 = 𝑘 𝑚𝑔⁄                    (10) 

which indicates how the linear components of spring and gravity 

are balanced. We can then write eq.(9) as 
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𝜃𝑒𝑞𝑢 = ±√6 (1 −
𝑙𝑐

𝑙
)            (11)  

where the necessary condition 𝑙 > 𝑙𝑐 for this solution type 

corresponds to our original condition 𝑘 > 𝑚𝑔𝑙. 

Also we can choose to rewrite eq.(7) as 

𝜎 = √
𝑔

𝑙
√(1 −

𝑙𝑐

𝑙
)               (12) 

Both of these equations clearly reflect critical behaviour at 𝑙 = 𝑙𝑐; 

we shall use these to plan our investigations. 

X.2.2 Frequencies of Oscillation 
For small amplitude oscillations these may be obtained using the 

gradient of the acceleration. Around a stable fixed point we have 

look for oscillations of frequency 𝜔 so that  

�̈� = −𝜔2𝜃              (13) 

but in approximation we have 

�̈� = −
𝑑�̈�

𝑑𝜃
|

𝑒𝑞𝑢𝑖

∆𝜃           (14) 

and since 

𝑑�̈�

𝑑𝜃
|

𝑒𝑞𝑢𝑖

= −2𝜎2         (15) 

we expect the local oscillations to have frequency 

𝜔 = √2𝜎                (16) 

X.2.3 Experimental Results 
Here we report the results of various simulation studies and 

compare to the theory developed above, especially eq.(11) for the 

equilibrium angles and eq.(12) for the oscillation frequency at each 

angle. Fig.3 shows the pitchfork bifurcation with branches to the 

right of 𝑙𝑐 given by eq.(11) shown as a solid curve with 

experimental data as circles for parameters m = 1, k = 4.905 with 
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𝑙𝑐 = 0.5. (Here m and k were chosen to give the stated critical 

length). 

 
Figure 3.Plot of equilibrium angle as a function of pendulum length l. The 
pendulum can be found with equal chance on each side of the vertical. Lines 
are from eq.(11), circles show simulation results. 

 

The variation of period with length l is shown in Fig.4 where solid 

lines are the theoretical solutions using eq.(4) below the critical 

point and eq.(16) above. The large increase of period close to the 

critical point (rising to infinity at that point) is clearly visible. 

 
Figure 4. Variation of period with length both above and below the critical 
length of 0.5. Lines are solutions of eq.(4) and eq.(16) with circles showing 
simulation results. 
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X.3 The Tilted Spring Pendulum 

X.3.1 Equations of Motion 
The symmetry of the simple spring pendulum may be broken by 

arranging the base of the system to be tilted at an angle 𝛼 as shown 

in Fig.5. Note that 𝜃 is measured from the vertical. We can easily 

imagine some possible solutions: With 𝛼 > 0 the pendulum will 

prefer to move clockwise and so might find an equilibrium there, 

but it might not, if the length l is small or the spring is very stiff. 

So it is perhaps not so easy to imagine realistic solutions, so we 

must resort to analysis. 

 
 
Figure 5. Pendulum titled from the vertical by angle 𝛼. 

Before we delve into the analysis, let’s consider on investigation 

for a value of 𝛼 = 1𝑜. The resulting bifurcation curve is shown in 

Fig.6; data points are shown as circles and the solid lines are 

interpolations through the points. 
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Figure 6. Simulated data points for equilibrium angle as a function of 
pendulum length (circles) with interpolated lines. 

This can be usefully compared with Fig.3, here we see the 

symmetry of the curve has been broken. When we actually perform 

an experiment, we start with L = 1, obtain the equilibrium value of 

𝜃, then reduce L. Starting on the top branch (with the pendulum 

located clockwise) we proceed smoothly to construct the upper 

branch. But starting on the bottom branch (with the pendulum 

located anticlockwise) something interesting happens; when we are 

at about L = 0.55 and reduce the length even further, the pendulum 

suddenly jumps over to the right, back onto the top branch. There 

is a range of L where no negative-𝜃 solutions are possible. 

We must now lay down the theory to understand this. The 

equation of motion becomes 

𝐼�̈� = 𝑚𝑔𝑙 sin 𝜃 − 𝑘(𝜃 − 𝛼)                  (17) 

where for the case of small 𝜃 we obtain the following expression 

which should be compared to eq.(6) 

�̈� = 𝜎2𝜃 −
𝑚𝑔𝑙

6𝐼
𝜃3 −

𝛼𝑘

𝐼
            (18) 

 

X.3.2 The Solution Surface 
Stationary solutions of this expression are obtained by setting �̈� =

0 which leads to the following, after a little cleaning up, 

𝛼 + (
𝑙

𝑙𝑐
− 1) 𝜃 −

𝑙

𝑙𝑐

𝜃3

6
= 0            (19) 
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This is an implicit equation for 𝜃 and defines a surface where 𝜃 =

𝑓(𝛼, 𝑙𝑐) which can be plotted numerically in Fig.7 where we have 

used 𝛽 = 𝑙 𝑙𝑐⁄ .  

 
Figure 7 Solution surface for equ.(19) where the equilibrium angle is a 
function of 𝛼and 𝛽. 

This surface contains all possible solution for the pendulum angle 

𝜃 as a function of the system parameters 𝛼 and 𝛽 = 𝐿 𝐿𝑐⁄ . It’s the 

latter parameter which is our principal or bifurcation parameter. 

The key feature of this surface is that it contains a fold and when 

this is projected onto the 𝛼 − 𝛽 plane we obtain a cusp which 

delineates several regions where the solution is different. Perhaps 

the easiest way to understand the range of solutions is to plot the 

associated potential wells at some (𝛼, 𝛽) points, see Fig.8. 
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Figure 8. Potential wells for some selected values of length l and parameter  

Let’s first consider the solutions where 𝛼 = 0 increasing 𝛽 from 

zero. All potential wells are symmetrical, which must be the case 

since the platform is not tilted. To the left of the cusp we have a 

single well centred on 0, so we will have oscillations about this 

point. Then, as we move to the right of the cusp, the well bifurcates 

and we have two minima. So we expect two solutions, oscillations 

with the same frequency but about different equilibrium points. As 

𝛽 is increased, the location of these points moves further from the 

origin. 

Now consider keeping 𝛽 fixed at 𝛽 = 0.8 and let 𝛼 increase from 

-30 to 30. We see the relative depths of the two potential wells 

changes, for negative tilt 𝛼 the negative well is deeper, so there is 

more chance of finding the oscillator here. As we move through 

𝛼 = 0 then the rightmost well becomes deeper, and we expect to 

find the oscillator with a positive angle. Finally as we leave the 

cusp, there is only one well, the rightmost. So oscillations must be 

around a positive angle. 
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X.3.3 Jumps in the System Solution 
Let’s return to the 3D surface and ask ourselves what it means to 

increase 𝛼 while keeping 𝛽 constant. Hopefully Fig.9 will help 

clarify the meaning of the jump. The idea is that we go on a journey 

and move along a path on the lower surface as shown by the red 

arrow. 

 
Figure 9. Journey along the solution surface starting at the red dot and moving 
to the left. At a certain point you run out of lower surface and have to jump 
to the upper part of the surface. 

We move smoothly along the bottom surface and pass through the 

lower cusp; we see that the equilibrium value of 𝜃 also smoothly 

changes, steadily increasing. But then we hit the fold in the surface. 

What happens, where do we go? The only place is to make a jump 

up to the top surface and we end up at the yellow circle. This jump 

implies a sudden change in the solution, 𝜃 has suddenly, 

discontinuously, jumped to a large value. 

Returning to our cusp diagram, this trajectory has moved through 

all the solutions within the cusp (for 𝛽 = 0.8) but none of these 

solutions are actually realized. The results of an experiment making 

just this path are shown in Fig.10. The blue curve shows the angle 

of the oscillator as the value of 𝛼 was increase manually starting at 

-30 degrees, these values are shown in red. A small amount of 

system damping was added to allow a smooth path across the 

solution surface. 
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Figure 10. Simulation investigation starting at a negative 𝛼 (red numbers) and slowly increasing 𝛼. At the 
critical point, the solution jumps to the higher branch. 

The solution changes smoothly as we traverse the cusp (-20 to +20 

degrees) but jumps when we leave the cusp (20 degrees). 

X.3.4 The Solution Surface and the Bifurcation Curve 
We must now relate the bifurcation curve (see Fig.6) which is 

defined by the solution angle as a function of 𝛽 for constant 𝛼. This 

is clearly a projection of the solution onto the 𝛽 − 𝜃 plane located 

by 𝛼. 

A slice through the surface for a small range of 𝛼 is shown in Fig.11 

which clearly reproduces the shape of the bifurcation curve, Fig.6 

above. 

 
Figure 11. Slice through the solution surface showing the bifurcation curve. 
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X.3.5 Some Experimental Results 
It is useful to compare two sets of experimental results, one for 𝛼 =

1𝑜 and the other for 𝛼 = 10𝑜 corresponding to a small and a larger 

platform tilt. The results are shown in Fig.12. Solid curves are the 

theoretical solutions, the blue is calculated from eq.(19) which is 

an approximation, the red are exact solutions computed implicitly 

from the equilibrium condition without approximation 

𝑙 =
𝑙𝑐

sin 𝜃
(𝜃 − 𝛼)                   (20) 

 
 

 
Figure 12. Bifurcation curves for two values of 𝛼: Top 𝛼 = 1deg, bottom 𝛼 =
10deg. 
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There is a clear difference in the bifurcation unfolding; for 𝛼 =

10𝑜  there is a larger gap between the upper and lower branch stable 

solutions. This is hardly surprising since a larger tilt implies a 

larger propensity for deflection in the direction of the tilt.  Looking 

at the lower branch, where 𝜃 < 0 we see that a larger pendulum 

length is required to obtain stable solutions. Again this is not 

surprising since a larger anticlockwise torque is needed to offset 

the spring torque due to the clockwise tilted platform.   Looking at 

the upper branch, for 𝛼 = 10𝑜 the variation with L is much 

smoother, again because here the pendulum has propensity to 

deflect in the tilt direction. 

X.3.6 Study of Frequency Dependency 
 

 


