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Chapter X 
Mass-2-Spring (M2K) Systems 

X.1 A Brief Introduction 
Here we are considering a mass situated on a horizontal (perhaps 

frictionless) plane tethered to two supports as shown below, the 

distance between the supports is 2d. We are primarily interested in 

transverse oscillations of the mass. There are two possible stable 

positions of the mass. The first (a) is where the unstretched length 

of the spring 𝐿0 is greater than d, so if we start with a horizontal 

arrangement, then the springs start off in compression. The 

horizontal arrangement is now unstable, so the mass moves up (or 

down) as shown in Fig.1(a). There are two key geometrical 

parameters in this system, 𝐿0 and d; we shall often take 𝐿0 as our 

independent variable in discussions and experiments. 

 
 
Figure 1. Top-down view of mass on springs showing two initial stable 
equilibria (a) springs start of in compression and (b) in tension. 

 

 

If we start off with the unstretched length less than d (𝐿0 < 𝑑) then 

the springs start off in tension, so the arrangement Fig.1(b) is 

stable. 
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X.2 The Monostable solution 

X.2.1 Equation of Motion and expected Frequencies 
Here we are considering the situation Fig1(b) above, and we wish 

to establish the equation of motion of the mass (ordinary 

differential equation, ODE). This is straightforward; we resolve the 

forces exerted by the springs on the mass in the y-direction, shown 

in Fig.2 where the mass has been given an upward displacement y. 

 
Figure 2. Springs initially in tension with a transverse displacement. 

 

Consider one spring which is in tension. Since the unstretched 

length was 𝐿0 and its current length is L then the force F in the 

spring is just 

𝐹 = −𝑘(𝐿 − 𝐿0)              (1) 

So the downward force is 

𝐹𝑦 = −𝑘(𝐿 − 𝐿0) sin 𝜃             (2) 

The total downward force becomes 

𝐹𝑦 = −2𝑘((𝑦2 + 𝑑2)
1
2 − 𝐿0)

𝑦

(𝑦2 + 𝑑2)
1
2

 

=  −2𝑘 [1 −
𝐿0

(𝑦2 + 𝑑2)
1
2

] 𝑦         (3)  

Clearly this force is in general not proportional to displacement y 

so we do not expect harmonic motion. However, it is useful to 

sketch the form of this force for various values of 𝐿0. Remember 

that 𝐿0 < 𝑑 so we choose three values of 𝐿0, one close to d, one 

close to zero and one in between. The results are shown in Fig.3 

For small initial spring length 𝐿0 when the spring is in place it is 
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taut, the force is almost linear, and of course is restoring. When 𝐿0 

is close to d so the spring is not at all taut when  in place, the force 

is dominated by the nonlinearity; close to the origin it has little 

stiffness which grows as the spring is stretched. This is definitely 

non-linear behaviour. The intermediate case is a mix of linear and 

nonlinear behaviour. 

 
Figure 3. Behaviour of restoring force with initial displacement y for various 
values of initial spring length 𝐿0. 

 

In general, the force is not proportional to displacement so we do 

not expect harmonic motion, in general. However for small 

displacement where 𝑦 ≪ 𝑑 the above expression simplifies to 

𝐹 = −2𝑘 [1 −
𝐿0

𝑑
] 𝑦      (4) 

And so we expect harmonic motion with 

𝜔2 =
−𝑑𝐹(𝑦)/𝑑𝑦

𝑚
       (5) 

𝜔2 =
2𝑘

𝑚
(1 −

𝐿0

𝑑
)       (6) 

which shows that the frequency reduces as 𝐿0 increases from small 

towards d. For a system with very taut springs, i.e. with 𝐿0 ≪ 𝑑 we 

find 

𝜔2 =
2𝑘

𝑚
    (7) 
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which if, of course, identical to the expression for longitudinal 

oscillations. 

X.2.2 Small Displacement Approximation 
In the case that 𝑦 ≪ 𝑑 we can apply a series expansion to the 

nonlinearity in the force equation and retain the leading term. We 

re-write eq.3 as 

𝐹 =  −2𝑘 [1 −
𝐿0

𝑑
(1 +

𝑦2

𝑑2)

−1/2

] 𝑦 

= −2𝑘 [1 −
𝐿0

𝑑
(1 −

1

2

𝑦2

𝑑2)] 𝑦   (8) 

which after some clearing up becomes 

𝑚𝑦̈ = −2𝑘(𝑑 − 𝐿0)
𝑦

𝑑
− 𝑘𝐿0

𝑦3

𝑑3
       (9) 

This expression, (which is an example of a Duffing equation), is 

interesting, since it describes the spring force as a sum of a linear 

term, and a cubic term in the non-dimensional variable 𝑦 𝑑⁄ . The 

linear term of course agrees with eq.4. 

Let us briefly look at the degree of approximation this equation 

affords us. Taking an engineering approach, the parameter d is 

assumed fixed. determined by the mechanical design. Then 𝐿0 is a 

variable we can choose (depending on the selected spring). It’s best 

to non-dimensionalize eq.4 by choosing 𝐿0 as a fraction 𝛼 of d, i.e., 

𝐿0 = 𝛼𝑑 which gives us 

𝑚𝑦̈ = −2𝑘(1 − 𝛼)𝑦 − 𝑘𝛼
𝑦3

𝑑2
     (10) 

where we interpret 𝛼 as selecting the weighting of the linear and 

non-linear terms, e.g. 𝛼 close to 1 would select the nonlinear term 

and 𝛼 close to 0 would select the nonlinear term. The ratio of 

nonlinear to linear terms is just 

1

2𝑑2

𝛼

(1 − 𝛼)
      (11) 

The plots in Fig.4 show the approximation to the force by eq.10 for 

𝛼 = 0.1 and 𝛼 = 0.9. 
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Figure 4. Variation of force with displacement for two values of 𝛼. Blue curves 
shown exact solution, eq.8, red curve approximation, from eq.10. 

 

For the latter case, the error between full and approximate 

calculations of force at an amplitude of d is around 50%. Clearly 

we have to be careful with approximations. 

X.2.3 Approximate Solution of the Nonlinear Equation 
If we retained only the linear term in eq.9 then we know how to 

calculate the vibration frequency, and we know since the motion is 

harmonic, this frequency does not change with amplitude. The 

question is, how does the existence of the nonlinear term change 

this? 

We are looking for a periodic solution to equ.X which suggests 

we should expand y(t) as a Fourier series and since we have a 
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cubic term, this should include only the odd harmonics, so we try 

a solution of the form 

𝑦(𝑡) ≈ 𝐴 cos 𝜔𝑡 + 𝐵 sin 3𝜔𝑡 

Then we equate all coefficients for terms involving cos 𝜔𝑡 and 

likewise for cos 3𝜔𝑡. This process is called ‘harmonic balance’, the 

algebra is cumbersome and is provided as an appendix. The result 

is very informative, expressing frequency as a function of 

amplitude A of displacement we find 

𝜔2 =
2𝑘

𝑚
(1 −

𝐿0

𝑑
) +

3𝑘

4𝑚

𝐿0

𝑑3
𝐴2        (12) 

which may be written in the non-dimensionalized form 

𝜔2 =
2𝑘

𝑚
(1 − 𝛼) +

3𝑘

4𝑚
𝛼

𝐴2

𝑑2
           (13) 

The first term is identical to equ.6 and the second reflects the 

nonlinearity. The effect of the nonlinearity is to increase the 

oscillation frequency, this is proportional to amplitude squared. 

This follows from the nature of the system force which increases 

with amplitude of deflexion. 

Results for an experiment with m = 0.5, k = 10, 𝐿0 = 1, d = 1.5 are 

shown in Fig.5. There is good agreement up to amplitudes around 

30% of d. 
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Figure 5. Theoretical predictions of amplitude against frequency with results 
of simulations. 

 

These diagrams make sense, the frequency of oscillation increases 

with amplitude since the average force on the mass also increases 

with amplitude. 

X.3 Unloaded Bistable Solution 

X.3.1 Dynamical Equations and Oscillation Frequency 
Here we are looking at the situation where 𝐿0 > 𝑑 corresponding 

to Fig.6 where the springs start off under compression. The 

situation is sketched below. At the top the system has moved into 

equilibrium where the springs are uncompressed, so we have 

𝐿0
2 = 𝑦𝑒𝑞𝑢𝑖𝑙

2 + 𝑑2          (14) 
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Figure 6. Bistable solution. The springs start off under compression, top 
shows the stable initial positions. Bottom shows the results of a 
displacement. 

 

The mass is displaced upwards, and the restoring force is just 

𝐹(𝑦) =  −2𝑘 [1 −
𝐿0

(𝑦2 + 𝑑2)
1

2⁄
] 𝑦     (15) 

To obtain the frequency of oscillation around 𝑦𝑒𝑞𝑢𝑖𝑙 we 

differentiate the force around this point, 

𝑑𝐹(𝑦)

𝑑𝑦
|

𝑦𝑒𝑞𝑢𝑖𝑙

= −2𝑘 + 2𝑘
𝐿0

(𝑦𝑒𝑞𝑢𝑖𝑙
2 + 𝑑2)

1
2

− 2𝑘𝑦𝑒𝑞𝑢𝑖𝑙
2 𝐿0

(𝑦𝑒𝑞𝑢𝑖𝑙
2 + 𝑑2)

3
2

      (16) 

= −2𝑘 (1 −
𝑑2

𝐿0
2 )        (17) 

and we therefore have harmonic motion with 

𝜔2 =
2𝑘

𝑚
(1 −

𝑑2

𝐿0
2 )     (18) 
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Note this is not the same as eq.6 for the monostable scenario.  

Plots of the force, as a function of y and of its first derivative 

provide some useful information. The plots below correspond to 

the parameters  m = 0.5kg, k = 10 N/m,  d = 1.5m, 𝐿0=2m. 

 
 

 

 

Figure 7. Restoring force (left) and first derivative (right) as a function of displacement y. 

 

The force plot shows three equilibrium points; the stability of each 

can be tested by imagining a positive displacement about the point; 

for the right and left point, a positive displacement produces a 

negative restoring force, these points are stable. For the centre point 

a positive displacement produces a positive force which will drive 

the mass further from the unstable equilibrium value. 

Let’s look at how the force changes around the right stable 

equilibrium; it’s clear to see that the force is always larger to the 

right of this point, therefore the oscillating mass will accelerate 

more in this rightmost region and so it’s period of oscillation will 

decrease (if we agree that period smoothly changes with 

amplitude). 

The system is bistable and symmetric, so the equilibrium solutions 

are 

𝑦𝑒𝑞𝑢𝑖𝑙 = √𝐿0
2 − 𝑑2               (19) 

so, in the language of bifurcation theory, they appear as a 

‘pitchfork’ bifurcation when we increase 𝐿0 through d. This is 

shown together with some experimental results in Fig.8. The 

experimental system parameters were m = 0.5kg, k = 10 N/m,  d = 

1.5m. 
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Figure 8. Bifurcation curve for y-equilibrium position as function of initial 
spring length. Curve from eq.19 simulated results shown as circles. 

 

As we know, below 𝐿0 = 𝑑 the equilibrium values are 0. 

The periods of each experimental oscillation are shown in Fig.9 

together with results obtained from eq.18. 

 
Figure 9. Variation of oscillation period with initial spring length. Curve from 
eq.18, simulation results shown as circles. 

 

As predicted by eq.18 as 𝐿0 approaches d the period rises sharply. 

This is because the restoring force hardly varies with displacement, 

the springs have effectively lost most of their stiffness. As 𝐿0 
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increases eq.X reduces to 𝜔2 = 2𝑘/𝑚 which for the given 

experimental values predicts a period of 0.994 seconds. 

X.3.2 An Energy Approach 
A complementary approach to understanding oscillations is to view 

the mass as moving in a potential well. We obtain the potential of 

our system 

𝑈(𝑦) = − ∫ 𝐹(𝑦)𝑑𝑦 + 𝑐𝑠𝑡
𝑦

0

          (20) 

which in this case evaluates to 

𝑈(𝑦) = 𝑘 [𝑦2 − 2𝐿0√𝑦2 + 𝑑2 − 2𝐿0𝑑]          (21) 

where we have chosen the constant of integration to set the PE zero 

at the bottom of the wells as shown in Fig.10. The equilibrium 

value of y is indicated. Note the assumption of zero friction. 

Circles represent initial conditions for a few solutions, the 

displacements from 𝑦𝑒𝑞𝑢 are 0.1, 0.5, 0.66 and 0.7. The first three 

states have energies below the hump value so the mass will 

continue to oscillate trapped in the right potential well. The value 

of 0.7 has energy above the hump and so the mass will oscillate 

passing through both potential wells. 

 
Figure 10. Graph of potential as function of displacement (from y=0) 
according to eq.21 with some possible starting locations showing three 
trapped and one ‘free’ trajectories. 
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Trajectories for these initial conditions are shown in Fig.11, on the 

left we have solutions trapped in the right well and on the right the 

solution traversing both wells. 

 
 

Figure 11. Trajectories of the system for the four initial conditions shown in Fig.10. Left shows the three 
‘bound’ solutions, and right shows the ‘free’ solution. 

 

We note that the form of the trajectories changes according to their 

initial conditions. For y=0.1 we obtain a low amplitude sine-like 

path. As the initial amplitude increases, the paths are deformed as 

the mass spends more time to the left of the equilibrium value due 

to the asymmetry of the potential curve; it needs longer to run up 

the shallower hill gradient than up the steeper gradient. 

This agrees with the force discussion presented above. 

X.4 Loaded Bistable Solution 

X.4.1Dynamical Equations 
Consider our M2K system, which is now located in the vertical 

plane, in this situation the mass will provide an additional 

downward force -mg, thus ‘loading’ the system. The diagram in 

Fig. 12 shows the system not in equilibrium 
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Figure 12. Bistable system located in a vertical plane taking the weight of the 
mass into account. Diagram shows forces for a displacement y. 

 

Again we assume 𝐿0 > 𝑑 so the springs starting off horizontal are 

under compression. The restoring force now becomes 

𝐹(𝑦) =  −2𝑘 [1 −
𝐿0

(𝑦2 + 𝑑2)
1
2

] 𝑦 − 𝑚𝑔        (22) 

This force is now asymmetric about y = 0 as shown in the Fig.13, 

for out ‘standard’ loaded parameter set m = 0.1 kg, d = 1.5m, k = 

20 N/m, and here with  𝐿0 = 2. 

 
Figure 13. Force from eq.22 with equilibrium y values shown. Due to the load, 
the force curve is no longer symmetrical about y=0. 

 

The equilibrium values of y, seen as a function of 𝐿0 are lower than 

for the unloaded case as is expected, but the gradient of the force 

is the same.  The frequency dependence will not be given by the 

simplified expression eq.18, since the equilibrium values are no 

longer given by 𝑦𝑒𝑞𝑢𝑖𝑙 = √𝐿0
2 − 𝑑2, instead we must use the 
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complete expression equ.16 and determine the equilibrium values 

numerically. When this is done we obtain the plot in Fig.14. 

 
Figure 14. Plot of oscillation period against starting spring length. Curve 
generated using eq.16, circles show results of simulating the system ODEs. 

There is clearly a critical value of 𝐿0 (here just above 1.6) where 

the period rises rapidly. This will be explained below. 

One may think that there is an additional solution type where the 

mass is in equilibrium below 𝑦 = 0. Here, rather than starting 

under compression as assumed above, the springs could start in 

tension. This is shown in Fig.15 for the equilibrium situation. 

 
 
Fig.15 Proposed ‘new’ solution, the lower bistable configuration. 

The springs still exert an upward force and at equilibrium the total 

force is zero 

𝐹 = 0 = −2𝑘 [1 −
𝐿0

(𝑦2 + 𝑑2)
1
2

] 𝑦 − 𝑚𝑔 

where the spring force appears negative but remember in this 

expression 𝑦 < 0. So this is not really a new solution since eq.(22) 

also includes this behaviour. When 𝐿0 is used as the bifurcation 
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parameter then 𝐿0 > 𝑑 implies the spring initially in compression 

and 𝐿0 < 𝑑 implies tension. 

X.4.2 Bifurcation Equation 
This equation results from searching for the equilibrium solutions 

to eq.(22), 

𝑚𝑔

2𝑘
= [

𝐿0

(𝑦2 + 𝑑2)
1

2⁄
− 1]      (23) 

which can be solved implicitly (numerically) and is shown in 

Fig.16 as solid lines for the upper and lower branches. 

 
Figure 16. Bifurcation curve for equilibrium y from eq.23 with simulation 
results and approximation, equ.24. 

Circles show experimental results for m = 0.2, k = 20, d = 1.5. 

While the solution from eq.(23) is exact, it is possible to obtain an 

approximate analytical expression for the equilibrium values. 

Using the condition 𝑦 < 𝑑 a little algebra gives 

𝑦𝑒𝑞𝑢 = (
𝑚𝑔

2𝑘
) (

𝐿0

𝑑
− 1)          (24)⁄  

shown as red dashed lines in the above figure. 

X.4.3 Bifurcation Unfolding 
The effect of the loading is to skew the potential hill resulting in a 

shallower valley corresponding to the upper equilibrium point and 

a deeper lower valley. So if we started with a series of experiments 

with random distribution of initial conditions and added some 
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damping to our system, more systems would come to rest at the 

bottom of the leftmost valley. 

 
Figure 17. Potential hill representation of the problem 

 

The shape of this well is sensitive to our key parameter 𝐿0 and as 

this is reduced the springs become less stiff and we expect the 

valleys to become more shallow. We also expect a value of 𝐿0 

where the right valley disappears and so does the upper stable 

equilibrium point. We can explore this by plotting the potential as 

a function of both x and 𝐿0 as shown in Fig.18.. 

 
Potential curve as a function of both y and 𝐿0. Red dotted line is an estimate 
of 𝐿0 when the right valley just disappears. 
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As 𝐿0 is reduced from 2.0 first the right valley disappears and then 

the left shifts its location to just under x = 0 which corresponds to 

the mass in equilibrium with the springs displaced downwards just 

enough to support its weight. 

Of course we are interested in when the rightmost valley 

disappears; this can be done by inspection, the red dashed line 

suggest a value of 𝐿0 just less than 1.7. The solution diagram for 

this value of 𝐿0 is shown above. 

X.4.4 The Period of Oscillations around Equilibrium 
We are interested in what determines the period of oscillation of 

the mass when it is given a small nudge around its equilibrium 

position. An expression is directly derived from eq.(16), here for 

the frequency, 

𝜔2 =
2𝑘

𝑚
[1 −

𝐿0

(𝑦𝑒𝑞𝑢
2 + 𝑑2)

1
2⁄

+
𝑦𝑒𝑞𝑢

2 𝐿0
2

(𝑦𝑒𝑞𝑢
2 + 𝑑2)

1
2⁄

]    (25) 

where 𝑦𝑒𝑞𝑢 is the equilibrium position which must be calculated 

separately or obtained by experiment. We can obtain two analytical 

approximations to eq.(25). 

First for small equilibrium value where 𝑦𝑒𝑞𝑢 < 𝑑 the second term 

in eq.(25) can be simplified and the third term ignored to give 

𝜔2 =
2𝑘

𝑚
[1 −

𝐿0

𝑑
]    (26) 

These correspond to the mass located below the horizontal. Second 

when the springs start off compressed, and where 𝑦𝑒𝑞𝑢
2 + 𝑑2 = 𝐿0

2  

the first and second terms cancel and the third is simplified giving 

𝜔2 =
2𝑘

𝑚
[1 −

𝑑2

𝐿0
2 ]    (27) 

These equations are plotted in Fig.19 together with experimental 

results for m = 0.2, k = 20, d = 1.5. 
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Figure 19. Plots of period against initial spring length 𝐿0. Full and simplified 
theoretical solutions are plotted together with simulation data. 

It’s clear that eq.(26) provides a useful approximation over a good 

range of 𝐿0 on the lower branch while the upper branch 

approximation has limited usefulness. 

For completeness, we plot the periods against the observed 

equilibrium positions, Fig.20. 

 
Figure 20. Plots of periods against equilibrium values. While solutions with 
any period appears possible, there is clearly a range of equilibrium values 
which is not. 

It’s evident that a range of equilibrium values between 0 and 0.5 

were not realized experimentally. This is due to the unfolding of 

the bifurcation, see Fig.16 where a similar range is absent, and can 
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be traced to the upper branch solutions jumping to the lower branch 

when the bifurcation parameter is reduced below a critical value. 

This jump phenomenon will be explored in Chapter.YY. 

 


