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Chapter 4 
Universal Bells 

4.1 A Brief Introduction 
Most of us are familiar with several forms of bells: those in 

churches and cathedrals, hand-bells used in the school playground, 

fixed bells such as on ships and in pubs, or perhaps in hotel 

receptions to summon attention. Of course, there are others as we 

shall see. But even this short list draws attention to several 

purposes of bells, from musical instruments to information 

communication devices. Figure 1 provides a broad selection of bell 

types; you will note that they are all suspended with the exception 

of (h) which is a Japanese Zen oryoki which is supported on a soft 

cushion and struck with a hand-held mallet. The remaining group 

of suspended bells can be divided into two; all have the clapper 

inside the body of the bell, with the exception of (f) which is a 

Buddhist temple bell, Bonsho. Here, the almost cylindrical bell is 

struck by a suspended horizontal wooden pole, moved by hand. 

The remaining clapper-inside bells are typical of church bells, but 

here there are four categories. In central Europe (a) the bell swing 

angle is between 60 – 70° while in the UK (b) this angle can be just 

over 180°. In both cases, the bell swings ‘too and fro’ between a 

positive and a negative angle. The situation in Spain (c) is 

completely different, where the bell angle continuously increases, 

the bell rotates but still the clapper is able to give periodic strikes. 

In all of these cases it is the bell that is driven by the bell ringers, 

and the clapper is free to work out its own motion, as we shall see. 

The orthodox church € has a different excitation approach; the bell 

is not driven, rather it is the clapper that is excited by the ringers. 

The remaining two examples are (d) which is a ship’s bell where 

the clapper is driven by hand via a short rope, and then the hand-

held bell (g) where the bell is swung by hand and the clapper 

follows. 
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4.2 Church Bells - Equations of Motion 

4.2.1 Complete Non-Linear Equations 
The mechanics of the bell and clapper are shown in Fig.2(a) where 

pivot points are shown in yellow and 𝑀 and 𝑚 are masses of bell 

and clapper, shown at the corresponding centre of masses. The 

locations of the pivot points merit some discussion; the bell’s pivot 

is often as shown, and the clapper pivot is not the same as the bell’s 

but is located at a distance r below the bell. This is how the bell 

manages to exert a force on the clapper. Note that the bell angle 𝜃 

is relative to the vertical, but the clapper angle 𝜑 is relative to the 

bell. Distance 𝑎 shows the location of the bell’s centre of mass 

relative to its pivot. 

 
Figure2. (a) 

 
(b) 

 
(c) 

So we have here a ‘double’ pendulum, though it is not of the classic 

type where the lower pendulum is usually pivoted at the centre of 

mass of the upper pendulum. Fig2.(b) shows the detail. Here the 

clapper is rotating around its hinge located at point (𝑥1, 𝑧1) which 

of course is accelerating (not just acceleration due to rotation) and 

so we must consider the dynamics of this point, as a precursor to 

the motion of (𝑥2, 𝑧2). You might have noticed that we have snuck 

in an assumption, that the centre of mass of the clapper is located 

at the centre of the clapper bob. We shall see how to relax this 

assumption later. 

Now we must consider the motion of (𝑥1, 𝑧1) and (𝑥2, 𝑧2). This is 

straightforward. We have for (𝑥1, 𝑧1) 

𝑥1 = 𝑟 sin 𝜃,   𝑧1 = −𝑟 cos 𝜃 

�̈�1 = 𝑟�̈� cos 𝜃 − 𝑟�̇�2 sin 𝜃 , �̈�1 = 𝑟�̈� sin 𝜃 − 𝑟�̇�2 cos 𝜃. 
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For (𝑥2, 𝑧2) we have, writing 𝜗 = 𝜃 + 𝜑, 

𝑥2 = 𝑥1 + 𝑏 sin 𝜗 , 𝑧2 = 𝑧1 − 𝑏 cos 𝜗. 

which leads to 

�̈�2 = �̈�1 + 𝑏�̈� cos 𝜗 − 𝑏�̇�2 sin 𝜗 

�̈�2 = �̈�1 + 𝑏�̈� sin 𝜗 + 𝑏�̇�2 cos 𝜗.            (1) 

Let us hold this  equation in mind and come back to use it in a 

moment. First, we need to consider the dynamics of the bell 

pendulum; the associated forces on it are shown in Fig.2(c). 

𝑚1�̈�1 = 𝑇2 sin 𝜗 − 𝑇1 sin 𝜃 

𝑚2�̈�2 = 𝑇1 cos 𝜃 − 𝑇2 cos 𝜗 − 𝑚1𝑔.       (2) 

Multiplying the first equation in this pair by cos 𝜗 and the second 

by sin 𝜗 and adding, we find 

�̈�2 cos 𝜗 + �̈�2 sin 𝜗 = −𝑔 sin 𝜗.      (3) 

So now we substitute the equations (xx) into this, replacing 𝜗, and 

after invoking some trig identities we find 

𝑏(�̈� + �̈�) + 𝑔 sin(𝜃 + 𝜑) + 𝑟�̈� cos 𝜑 + 𝑟�̇�2 sin 𝜑 = 0.      (4) 

We have almost reached our destination, but we need to find an 

expression for �̈�. Here we shall make an approximation, which is 

quite realistic for real bells; the mass of the clapper is much less 

than the mass of the bell. So this allows us to decouple the clapper 

from the bell, so we assume that the bell is forced by gravity alone, 

and not by its connexion with the clapper. For the bell we have 

𝐼𝐵�̈� = −𝑀𝑔𝑎 sin 𝜃.      (5) 

We have arrived at our destination. Combining eq.4 and eq.5 and 

defining 𝑙𝐵 = 𝐼𝐵 𝑀𝑎⁄  we now end up with a system of ODEs that 

describes our bell-clapper system 

 

�̈� = −
𝑔

𝑙𝐵
sin 𝜃                                                                                                   

�̈� =
𝑔

𝑙𝐵
sin 𝜃 −

𝑔

𝑏
sin(𝜃 + 𝜑) −

𝑟

𝑏
�̈� cos 𝜑 −

𝑟

𝑏
�̇�2 sin 𝜑.     (6) 
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Of course neither the bell nor the clapper can be modelled as a mass 

on a massless rod; they are both physical pendulums. To take this 

into account, we replace 𝑙𝐵 and b  with their equivalent lengths (see 

Section XX) and these can be determined from the free oscillation 

periods of the bell and clapper. 

Equation?? models the motion of bell and clapper when both are in 

flight; we still need to take the collisions into account. Here physics 

meets the details of our numerical solver. There are two possible 

approaches, first to model the collision as a discrete event and use 

conservation of energy and momentum to find the velocities of bell 

and clapper post collision. The numerical solver must be restarted 

using these values as new initial conditions. In the second approach 

we model the clapper-bell interaction continuously as the 

compression of a linear spring of large stiffness, together with an 

effective restitution coefficient. 

4.2.2 Discussion and Alternative Derivation 
The equation for the bell angular acceleration has a very familiar 

form; we recognize that this form originates from the gravitational 

force applying a torque to the bell’s centre of mass.  

The terms in the clapper equation look remarkably similar; the first 

two have gravity divided by length. The first term represents the 

angular acceleration of the clapper due to the bell excitation; the 

second term (involving length b) represents the effect of gravity 

acting on the clapper. 

What about the two remaining terms? There is no gravity here, 

rather we have accelerations 𝑟�̈� and 𝑟�̇�2. We recognize these as 

tangential components of the acceleration along a circular arc. This 

suggests we may be able to derive eq.6 by considering the clapper 

moving in a non-inertial frame provided by the bell’s acceleration. 

We shall use eq.6 in our simulations, but we can effect an 

additional simplification if we rescale time defining a new time 

variable 𝑡′ = 𝑡 √𝑙𝐵⁄  in which case we find 

 

�̈� = −𝑔 sin 𝜃                                                                                                   

�̈� = 𝑔 sin 𝜃 − 𝑔
𝑙𝐵

𝑏
sin(𝜃 + 𝜑) −

𝑟

𝑏
�̈� cos 𝜑 −

𝑟

𝑏
�̇�2 sin 𝜑.     (7) 
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The new dynamics are controlled by two non-dimensional 

parameters, 𝑙𝐵 𝑏⁄  and 𝑟 𝑏⁄ , so we must consider this when 

performing investigations. 

There is one limiting situation we must consider, when 𝑟 = 0 

which means that the bell and clapper rotate around the same pivot. 

The bell cannot apply any torque to the clapper, until there is a 

collision, so the clapper will remain at rest. Remembering the 

definition of the clapper angle (relative to the bell), this implies that 

�̈� = −�̈� and from eq.6 we deduce that 𝜑 = −𝜃 which is consistent 

with the clapper remaining at rest. 

4.2.3 Small-angle approximation 
So far, we have used the approximation 𝑚 ≪ 𝑀 which has allowed 

us to decouple the clapper and bell, at least the effects of the clapper 

on the bell which behaves like a single pendulum. Now we look for 

small angle solutions and make the usual trig approximations 

sin 𝜃 ≈ 𝜃 and cos 𝜗 ≈ 1. Also we can neglect terms involving 

nonlinear products since these will be relatively small. In other 

words we are now considering the system 

�̈� = −
𝑔

𝑙𝐵
𝜃 

�̈� =
𝑔

𝑙𝐵
𝜃 −

𝑔

𝑏
(𝜃 + 𝜑) −

𝑟

𝑏
�̈�.     (8) 

With substitution of �̈� into the second equation and with a little 

rearrangement we have 

�̈� = −
𝑔

𝑙𝐶
𝜑 + 𝑔𝜃 [

𝑙𝐶 − 𝑙𝐵 + 𝑟

𝑙𝐶𝑙𝐵
],     (9) 

and if we take the bell’s motion as 𝜃 = 𝐴 cos 𝜔𝐵𝑡 where 𝜔𝐵 is the 

bell’s natural oscillation frequency, then the equation we must 

solve becomes 

�̈� = −
𝑔

𝑙𝐶
𝜑 + 𝑔 [

𝑙𝐶 − 𝑙𝐵 + 𝑟

𝑙𝐶𝑙𝐵
] 𝐴 cos 𝜔𝐵𝑡.     (10) 

This is a linear 2nd-order ODE which we can solve as a sum of 

homogeneous and particular solutions. But before we do that, just 

look at the bracket in eq.10. We see that whatever the bell’s 

amplitude, then if 𝑙𝐵 = 𝑙𝐶 + 𝑟 then the bell will never ring, since 
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the angle of clapper relative to the bell will remain zero (if it starts 

at zero). We shall return to this soon. 

Now we solve eq.10. The homogeneous solution will have the form 

𝜑ℎ(𝑡) =  𝐶1 cos 𝜔𝐶𝑡 + 𝐶2 sin 𝜔𝐶𝑡, 

where 𝜔𝐶 = √𝑔 𝑙𝐶⁄ , the natural oscillation frequency of the 

clapper. For the particular solution we try 

𝜑𝑝(𝑡) =  𝐷 cos 𝜔𝑡, 

which on substitution into eq.?? yields 

𝐷(𝜔𝐶
2 − 𝜔2) = 𝑔𝐴 [

𝑙𝐶 − 𝑙𝐵 + 𝑟

𝑙𝐶𝑙𝐵
]. 

So the general solution is 

 

𝜑(𝑡) =  𝐶1 cos 𝜔𝐶𝑡 + 𝐶2 sin 𝜔𝐶𝑡 +
𝑔𝐴

(𝜔𝐶
2 − 𝜔2)

[
𝑙𝐶 − 𝑙𝐵 + 𝑟

𝑙𝐶𝑙𝐵
] cos 𝜔𝑡, 

 

 

and for initial conditions 𝜑 = 0, �̇� = 0 we arrive at, after a little 

cleaning up 

𝜑(𝑡) =  𝐴
(𝑙𝐶 − 𝑙𝐵 + 𝑟)

(𝑙𝐵 − 𝑙𝐶)
[cos 𝜔𝐵𝑡 − cos 𝜔𝐶𝑡],                (11) 

where 𝜔𝐵 = √𝑔 𝑙𝐵⁄  is the natural frequency of the bell. Note that 

this equation is valid only if 𝑟 ≠ 0. We can perhaps rewrite eq.11 

in a more revealing way. 

𝜑(𝑡) =  2𝐴 [1 −
𝑟

𝑙𝐵 − 𝑙𝐶
] sin 1

2
(𝜔𝐵 + 𝜔𝑐)𝑡 sin 1

2
(𝜔𝐵 − 𝜔𝑐)𝑡. (12) 

The constant term shows that the amplitude of 𝜑 approaches zero 

as r approaches 𝑙𝐵 − 𝑙𝐶. The periodic terms comprise an oscillation 

with the average of bell and clapper frequencies modulated by half 

the difference in frequencies. If the bell length is close to the 

clapper length, then these frequencies are close, so their difference 

is small. Therefore the period of the modulation is large, and we 

expect our system to take a relatively long time to achieve some 

sort of periodic equilibrium. 



Physica-1A      8 
 

4.2.4 Visualizing Bell and Clapper Rotations 
First, we introduce some vocabulary. There are two ways in 

which the clapper may strike the bell, Fig.3. 

 
Figure 3. 

In situation A the bell and clapper have the same sign of angular 

velocity when they collide, so the rotations are ‘in-phase’. The 

clapper speed must be larger than the bell speed for a collision to 

occur, and the sign of its velocity does not change on collision. This 

resembles two carts on a linear air-track travelling in the same 

direction. This situation is known as a flying clapper. In situation 

B the bell and clapper are contra-rotating with opposite signs of 

angular velocity; the clapper velocity sign is inverted on collision. 

This is known as a falling clapper. 

The two situations produce very different sounds; the falling 

clapper strike (collision) involves a large transfer of energy 

producing a louder sound; we refer to this strike as a hard strike. 

Conversely, the flying clapper strike involves a smaller energy 

transfer and a softer sound; we refer to this as a soft strike. Bell-

ringers prefer a hard strike since they report it is easier to obtain a 

pleasing sound in this situation. 

It may be useful to consider a hypothetical bell rotation (360°) to 

get the positions of bell and clapper into our heads. This is done as 

10 stages in Figure 4. 

 
Figure 4. 
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Let’s start with bell and clapper at rest in the vertical position, A. 

The bell rotates anti-clockwise, and the clapper remains at rest, B. 

Eventually the clapper makes contact, C, and it sticks to the bell as 

is dragged along with the bell, D,E,F. At F the bell has rotated 

beyond 180° and the clapper is vertical. At G bell and clapper have 

rotated a little more, so the clapper is free to rotate. The clapper 

rotates faster than the bell and starts to catch the bell up, H, until it 

strikes the bell, I, and then bounces back. Now clapper and bell are 

contra-rotating J. [Review this]. 

4.3 Great St. Mary’s Cambridge Tenor Bell 
We could plan investigations in a number of ways. Thinking about 

the parameters at our disposal, we have the ratios 𝑙𝐵 𝑏⁄  and 𝑟 𝑏⁄  

which control the clapper dynamics, and of course we have the 

system initial conditions both for 𝜃 and 𝜑. This opens up a 

potentially huge parameter space to explore, so we have to be 

somewhat pragmatic, and make a useful (and straightforward) 

choice on how to proceed. 

We have decided to take a ‘case study’ approach, to consider some 

real church bells and to investigate these. The ratios 𝑙𝐵 𝑏⁄  and 𝑟 𝑏⁄  

are therefore known, and all that remains is to choose our 

independent variable, and the initial conditions. For the 

independent variable we choose the amplitude of the bell, assuming 

this is constant, and make some measurement on the behaviour of 

the clapper. Initial conditions are, for the bell 𝜃𝑖𝑛𝑖𝑡 = 𝐴,   �̇�𝑖𝑛𝑖𝑡 = 0 

and for the clapper 𝜑𝑖𝑛𝑖𝑡 = 0,   �̇�𝑖𝑛𝑖𝑡 = 0. 

We shall proceed by increasing the amplitude of the bell from 0 to 

180° and measuring the time intervals between successive strikes 

between clapper and bell, and also the number of strikes per bell 

swing (period). 

For the first case study we have selected the Tenor bell at Great St. 

Mary’s church, Cambridge. This bell has been selected since the 

required information is available1, 𝑙𝐵 = 1.35𝑚, 𝐿𝐶 = 0.77𝑚, 𝑟 =

0.179𝑚. Figure5 shows simulation results bell swing angle in the 

range 40 – 180°. Blue dots show results of times between clapper-

bell strikes, dashed lines indicate the period of the bell as a function 

 
1 See the journal article “The Dynamics of a Ringing Church Bell”, 

Woodhouse et al., Advances in Acoustics and Vibration, Nov. 2012. We 

also express our thanks to Jim Woodhouse for personal communication. 
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of swing angle, together with half and one quarter period. The 

legend shows the different striking regimes which have emerged 

from the study. 

Here’s an overview of the results, details will be presented later. 

Starting from a swing of 40°, we first encounter a chaotic region 

where strikes occur without any definite time interval and may 

occur at positive or negative clapper angles without any pattern. 

This is followed by region 2 where there is one strike per bell 

swing. In region 4 there are two strikes per swing and in region 5 

there are four strikes per swing. Region 3 is a transition region. 

Note the green squares show the sums of individual clapper strikes 

over a single bell swing period, these sum to the bell period as 

expected. 

 

 
Figure 5. 

 

This diagram is interesting and reminds us of pitchfork 

bifurcations, though the interpretation of the fork branches is novel 

as we shall see. Let’s have a look at a couple of straightforward 

cases, for swing angle 55° and 65°. 
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4.3.1 Swing Angle 55° 
Here we are in region 1. To understand the physics of the bell-

clapper strike, we plot the bell and clapper angles, 𝜃, 𝜑 and their 

angular velocities �̇�, �̇� as a function of time, see Fig.6. 

 
Figure 6. 

Angles are shown at the top and velocities at the bottom; blue bars 

on the top plot shows the moment of strike. This is also clear from 

the abrupt change in clapper velocity. From these plots we can see 

at the moment of strike, at bell angle 48.3°, we have 𝜃 > 0,  𝜃 ̇ >

0,   𝜑 ≈ −𝜑𝑚𝑎𝑥,  𝜑 ̇ < 0. The insets show the system at four points 

in its swing, to the left of vertical, at the moment of strike and later 

on, to the right of vertical and finally when the bell angle is zero. 

At -55° the clapper is rotating faster than the bell, so it is catching 

up which leads to the strike, and at 40° the clapper has reversed its 

direction of motion. As the bell continues to decrease its angle, the 

clapper angle increases, ready for the next cycle. 

Clearly this is a falling clapper or hard strike situation. We also see 

that there is one strike per complete bell swing and this is exactly 

periodic, so we expect to hear |--------|--------|--------. (This 

symbolic representation indicates a strike ‘|’ and concatenated ‘-‘ 

indicate the length of the time interval between strikes, here equal).  
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4.3.2 Swing Angle 65° 
Here we are in region 4. The time traces now show two strikes 

per swing, Fig.8, and we have for alternate strikes 

𝜃 < 0,  𝜃 ̇ < 0,   𝜑 ≈ 𝜑𝑚𝑎𝑥 ,  𝜑 ̇ > 0 

𝜃 > 0,  𝜃 ̇ > 0,   𝜑 ≈ −𝜑𝑚𝑎𝑥,  𝜑 ̇ < 0 

 
Figure 8. 

The insets show the system at the first strike, when the bell passes 

through 0° and at the second strike. There are two strikes per 

complete bell swing, and we expect to hear |----|----|----; both 

strikes have contra-rotating bell and clapper, so they are both hard 

and therefore loud. The strikes are anti-symmetric; both bell and 

clapper angles and velocities equal and opposite. The centre inset 

shows when the bell is vertical, the clapper has inverted its velocity 

ready for the strike on the right 

4.3.3 Region 3 : 58° 
This transition region is bounded by the previous two examples, so 

we shall look at a third example in this region for a swing angle of 

58°, Fig.10. The time traces have some interesting features: First 

we see the strikes are periodic but not regular; there is a short inter-

strike interval followed by a longer one. 
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Figure 10. 

The traces and inserts show we have a hard strike followed by a 

soft strike, so we shall hear a regular sound |--------|------|--------- 

where red symbols indicate a hard strike and green a soft strike. 

The defining difference between a hard and soft strike is visible in 

the change in clapper velocity on collision; for the hard strike this 

is larger than the soft. More energy is transferred so the sound of 

the hard strike is louder. 

Consideration of the above time-traces yields the following states 

for the hard and soft rings 

𝜃 > 0,  𝜃 ̇ > 0,   𝜑 ≈ −𝜑𝑚𝑎𝑥,  𝜑 ̇ < 0           (ℎ𝑎𝑟𝑑) 

𝜃 < 0,  𝜃 ̇ > 0,   𝜑 ≈ 𝜑𝑚𝑎𝑥,  𝜑 ̇ > 0             (𝑠𝑜𝑓𝑡) 

The key difference is that for a hard strike the bell and clapper are 

contra-rotating prior to the strike, whereas for the soft strike the 

bell and clapper are rotating in the same direction, albeit with 

different speeds.  

Now we can understand the changes to the system dynamics as we 

proceed from region 2 to region 4 through region 3. At the left of 

region 3 we have a single hard strike per swing, and as we enter 

region 3 an additional soft strike appears. Moving through region 

3 this soft strike progressively becomes harder so as we exit region 

3, we end up with two hard strikes per swing. 
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4.3.4 Region 5 : 92° 
Here we move from region 4 where there are two strikes per swing 

into region 5 where there are (at least) four strikes per swing. Let’s 

start by considering a swing angle of 92°, just inside region 5, time 

traces are shown in Fig.12 

 
Figure 12. 

There are two rows of insets; the upper row shows the system just 

before the strikes, and the lower row shows the bell at angle 

amplitude ±90°. 

Compared with Fig.8 we see there is an additional strike with the 

sign of the bell angle unchanged. The time-trace for 𝜑 suggests the 

clapper bounces off the bell on the first strike, then returns to the 

bell to strike again. You can see this on the first three insets where 

the bell has a positive angle at 90° both bell and clapper velocities 

are essentially zero, so there must be a velocity inversion around 

this angle. The same argument is true for the final three insets. 

We have for the two strikes at the positive bell angle: 

𝜃 > 0,  𝜃 ̇ > 0,   𝜑 ≈ −𝜑𝑚𝑎𝑥,  𝜑 ̇ < 0       (1𝑠𝑡 𝑠𝑡𝑟𝑖𝑘𝑒 − ℎ𝑎𝑟𝑑) 

𝜃 > 0,  𝜃 ̇ < 0,   𝜑 ≈ −𝜑𝑚𝑎𝑥,  𝜑 ̇ < 0        (2𝑛𝑑 𝑠𝑡𝑟𝑖𝑘𝑒 − 𝑠𝑜𝑓𝑡) 
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so the first strike is hard and the second is soft. We shall hear the 

following sounds:  |----|------|----|------ where red strikes are loud 

and green are soft. 

4.3.?? Region 5 : 110° 
When we increase the swing to 110°, then a new phenomenon 

emerges; we find that following the first two strikes multiple 

additional strikes occur. The amplitude of these is so small that the 

clapper hardly moves away from the bell, these strikes will be 

inaudible drowned in the reverberation of the previous strikes. This 

situation is shown in Fig 14 which includes a magnified part of the 

time trace. 

 
Figure 14. 

 

4.3.?? Region 5 : 170° 
Finally we move up to an angle of 170° where we see the clapper 

remains ‘stuck’ to the bell for a considerable time. The dynamics 

involves the clapper striking the bell, then following a second strike 

it sticks to the bell. This process happens for both halves of the bell 

period, see Fig.15. 
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Figure 15. 

 

4.3.5 Region 1 Chaos and Quasi-periodic behaviour 
In this region we have found no periodic solutions, but there could 

be some lurking in a chink in the parameter space. Instead, we find 

chaos or regions of periodic clappering punctuated by intervals of 

no contact. To explore this region we measure the number of 

collisions per bell swing and discard the first 20 strikes to avoid 

any transient. This does seem rather arbitrary. The independent 

variable is the bell swing as usual. Results are shown in Fig.16. 

 
Figure 16. 
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As expected, the collisions per swing (cps) decreases with the 

swing angle, even though the swing period increases. The above 

plot does have a structure; there are three ‘flat’ regions and a 

couple of peaks. These are labelled in Fig.16 which also contains 

an inset of results in the range 35-40°. At A the solution consists of 

a mix of strikes on alternate bell sides punctuated by repeated 

strikea, Fig.17. This is the closest to periodic behaviour we have 

seen with cps just less than 1.0. At B we have more irregular  

 
Figure 17 

behaviour suggesting chaos, there are short chains of strikes on one 

side punctuated by one or two strikes on the other side of the bell. 

At C we have a periodicity of two swings and four strikes over the 

interval shown. At D we are looking at 2 strikes for 3 swings which 

agrees with the cps of 0.667. Finally at E we have another different 

behaviour, the time trace shows strikes punctuated by long silent 

intervals. 
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4.4 The Spanish System 
Spain has a peculiar system where the bell continually rotates 

around its pivot and yet can provide regular strikes, a technique 

known as ‘volteo’. To achieve this the bell is counterbalanced to 

place its centre of gravity close to the rotation axis, Fig.19, and is 

continuously driven by a motor through a simple belt and pulley 

drivetrain. 

 
Figure 19 

The governing ODEs (eq.7) can be simplified to 

�̈� = 0 

�̇� = Ω 

�̈� = −
𝑔

𝑙𝐶
sin(Ω𝑡 + 𝜙) −

𝑟

𝑙𝐶
Ω2 sin 𝜙 .       (13) 

which of course describes the dynamics between strikes. It is useful 

to predict possible motions of the clapper. For very low angular 

speeds we expect the clapper to stick to the bell following a first 

strike and when it has been dragged up to just past the vertical, we 

expect it to fall, moving faster than the bell, and strike again. For 

very high angular speeds we expect the clapper to experience a 

large centrifugal force and to have a reduced oscillationamplitude 

so it does not strike and there will be no sound. Between these 

extremes we must investigate! Results of simulations are now 

presented. 

4.4.1 Atlas of Solutions 
Here we present the results of a study of clapper motion for various 

bell angular speeds (°/s). There is the usual caveat that these results 
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may be incomplete, since it is always possible to reduce the 

increment in speed as we plan the simulations. Fig.20 shows an 

overview of various observed regimes. 

 
Figure 20. 

In region-A we find regular patterns of strikes with significant 

clapper sticking; this sticking disappears in region-B which 

consists of regular patterns of strikes. In region-C we find packets 

of regular strikes separated by one or two missed strikes. Region-

D shows irregular patterns of strikes, and in region-E there are no 

strikes. 

Listening to the bell sounds we find pleasing strike patterns for Ω =
100, 300, 450, 500 rev/sec, though the rate of striking for the last 

two speeds is too high to be useful. 

Figure 21 shows time traces for a representative sample of each 

region. Here the green curve is the bell angle, and the red curve is 

the clapper angle, blue bars indicate a strike. 

 
Figure 21. 



Physica-1A      20 
 

Focussing on the blue bars, you can see regular behaviour for Ω =

100, 300 rev/sec, with and without sticking. For Ω = 510 you can 

see packets of regular behaviour punctuated by missed strikes. 

Irregular striking is observed for Ω = 700, and for Ω = 985 there 

are (almost) no strikes though an errant strike has snook in. We are 

close to a parameter boundary here. 

Another approach to investigating different regions of bell 

dynamics is to plot the time to the first strike from a rest position 

where both bell and clapper are vertical. This time is indicative of 

the length of the initial oscillation transient. Results are shown in 

Fig.22. 

 
Figure 22. 

As expected, the time initially decreases with rotation speed, but 

then almost reaches a plateau which is quite surprising. There 

follows a general increase separated by ‘jaggies’. Investigation of 

these shows the clapper amplitude just misses the condition for 

strike, corresponding to punctuated packets of strikes. This 

suggests a progressive increase in length of punctuation which we 

do in fact observe. However a little problem emerges, Figs. 21 and 

22 do not agree (we did warn that Fig.21 may be incomplete and 

here we find it is). Fig.22 shows that there are strikes in region-E; 

these were missed in the initial investigations where the 

simulations were stopped too soon. The results in Fig.22 do show 

the time to first strike is rising sharply, further investigation 

showed that there are no strikes for Ω > 990 where the solver was 

run for 300 seconds. 
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4.4.2 Dynamics for Ω = 100 °/𝑠 
The motion of bell and clapper for a bell speed of 100°/s is shown 

in the time traces, Fig23. The green trace is the bell angle, red is 

the clapper angle and blue lines show strikes. The angular 

velocities of bell and clapper are also shown. Angular locations of 

bell and clapper are shown in the included diagrams. Starting from 

rest where both bell and clapper are vertical (0°) the bell rotates 

anti-clockwise, and the clapper strikes when the bell has reached 

62°. There is a bounce and the clapper re-strikes at 76° after which 

it sticks to the bell. As the bell rotates further, the clapper remains 

stuck up to 215° (where it is just past the inverted vertical) and the 

clapper becomes unstuck and starts falling, rotating faster than the 

bell. At 276° it then strikes, rebounds and comes in to strike again 

at 304° followed by a small bounce and short time of sticking until 

it is completely free at 316°, after which the cycle repeats. 

 
Figure 23. 

So we shall hear two double strikes per bell revolution which we 

can write symbolically as |-|---|-|--------|-|---|-|--------. Looking at 

the clapper velocities at strike, we see the sounds are H-H---S-H--

-------. [Update above diag. w. velies.] 

4.4.3 Dynamics for Ω = 300 °/𝑠 
This dynamic is more straightforward since we have no sticking. 

Figure 24 shows the situation; here the bell is vertical, and the 
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clapper has a positive angle close to the strike angle. The bell 

rotates faster than the clapper whose angle decreases until the bell 

reaches 110° where there is a falling (hard) strike. The clapper 

rebounds and when the bell reaches 195° there is a second hard 

strike. The clapper rebounds and free-falls (additional insert) until 

at bell angle 353° there is a third hard strike. We hear the following 

sequence |---|-|------|---|-|------ where all the strikes are hard. 

 

 
Figure 24. 

 

 

 

 

 


