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Chapter 3 
Pendulums 

3.1 A Brief Introduction 

3.1.1 A Small dose of History 
You have seen pendulums all around us, some typical examples 

intended to jog your memory are shown in Fig.1. The very first 

systematic pendulum observations were made around 1600 by 

Galileo who found that the period of the pendulum was a very 

significant property. He found this did not depend on the mass of 

the bob, nor on its amplitude, but was proportional to the square 

root of its length. Around 60 years later the Dutchman Christiaan 

Huygens took Galileo’s work and invented the first pendulum 

clock. Clocks are very important things, they organize our lives, 

and they used to be fundamental in maritime navigation. Going 

backwards in history, the Romans used a pendulum-like 

‘hodometer’ to measure distances, but not for clocks; they used 

sundials and water clocks, the latter were used in ancient Egypt as 

far back as the 16th century BC. The Chinese engineered an 

interesting application, Zhang Heng’s seismometer from about 132 

AD. 

3.1.2 Ingredients to make a Pendulum 
There are a few ingredients needed to successfully bake a 

pendulum. The first is gravity, without gravity you cannot have a 

pendulum. The second is some sort of bob, a mass that can move. 

Third there is a pivot point or some centre of rotation around which 

the bob can rotate and oscillate. Finally, the pendulum system needs 

to be engineered so that there is a rest or equilibrium position, and 

any push to move the bob away from this will result in the bob 

returning to this position. Without doubt, it is gravity which is most 

vital; if you create a working pendulum on Earth, then take it into 

deep space, where there is zero gravity, then it will stop being a 

pendulum, and perhaps become a work of art. 

3.1.3 Pendulums in our Natural and Engineered World 
Figure 1 shows a small collection pendulums which we think you 

will find interesting. 
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Figure 1 

(a) Swinging pub sign 

(b) Chandelier 

(c) Pendulum on the Moon 

(d) Wrecking ball 

(e) Gremlin on a swing 

(f) Spider hanging on a thread 

(g) Swinging incense 

(h) Construction crane with load 

(i) Tree swaying in the wind 

(j) Church Bell 

(k) Cat balancing a pole 

(l) Cat balanced on a pole 
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You will recognize some examples as ‘designed’ to oscillate such 

as the swing (e), the church bell (j), and the censer (g), and perhaps 

the wrecking ball (d). Others will oscillate even though they have 

not been designed to, such as the pub sign (a), chandelier (b) and 

the construction crane (h). In these cases oscillations may not be 

desirable or may be dangerous. The ‘natural’ examples (f) and (i) 

are interesting, the tree will oscillate when deflected by a strong 

gust of wind. The two cat examples (k), (l) are unusual since the 

(h) 

(i) 

(k) 

(l) 

(j) 
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pendulums here are ‘unstable’; without concerted action from the 

cat, the rod in (k) will topple and rotate onto the cat’s tummy, in (l) 

the cat will have to actively balance on the top of the rod, lest it 

falls. These are examples of ‘inverted’ pendulums. 

3.2 The Simple Pendulum 
The arrangement shown in Fig.2 is our starting point consisting of 

a mass in a gravitational field, constrained to rotate around a pivot 

point. Its equilibrium position is vertical with 𝜃 = 0, and it is clear 

that if it is displaced by an increase in 𝜃, so it appears as in the 

diagram, then it will move to reduce 𝜃. We have all the ingredients 

of our recipe. 

 
Figure 2. 

The ODE for this system is straightforward if we choose to work 

in polar coordinates: Our ‘displacement’ variable is 𝜃 and we shall 

have an angular velocity 𝜃̇ and an angular acceleration 𝜃̈ which we 

shall need to set up the ODE. Instead of force we need to use torque 

𝜏 (force times distance from the centre of rotation, the blue line in 

Fig.??), and instead of mass we need moment of inertia, which here 

is 𝑚𝐿2. The torque on the bob is just 

𝜏 = −𝑚𝑔𝐿 sin 𝜃, 

so the ODE is 

𝑚𝐿2𝜃̈ = −𝑚𝑔𝐿 sin 𝜃, 

hence 
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𝜃̈ = −
𝑔

𝐿
sin 𝜃 .             (1) 

Note that the bob mass has disappeared from the expression1 and 

the pendulum behaviour is determined by gravity and the 

pendulum length. Remember Galileo found the length was 

significant by experiment. 

Equation 1 looks so benign, even friendly that we expect to find a 

simple analytical solution. But mathematics intervenes, and there 

is no solution to this equation. So we must resort to investigating 

approximations, and that requires some thought, which of course 

makes life interesting. Do not fret – we have done the groundwork 

in Chapter 2. 

3.2.1 The ‘classic’ textbook approximation. 
The problem with eq.1 is that the right hand side has a non-linear 

function of our system variable, sin 𝜃. We really want a linear 

function in terms of 𝜃 and we know that the Taylor expansion of  

sin 𝜃 provides us with that. But let’s step beyond the classic 

textbook discussion. 

The Taylor expansion of  sin 𝜃 around zero is just 

sin 𝜃 = 𝜃 −
1

3!
𝜃3 +

1

5!
𝜃5 − ⋯            (2) 

so if we take the first term as an approximation, the ODE 

becomes 

𝜃̈ = −
𝑔

𝐿
𝜃.             (3) 

We recognize this immediately, and can write down the expression 

for the oscillation frequency, 

𝜔 = √
𝑔

𝐿
                    (4) 

We can of course take the next term in the approximation and 

attempt to solve the ode 

 
1 You should not be surprised by this, since the physics involves inertial 

mass and gravitational mass, which since they are equal cancel from the 

acceleration. 
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𝜃̈ = −
𝑔

𝐿
[𝜃 −

1

3!
𝜃3]            (5) 

We proceed as usual an try a solution 𝜃 = 𝐴 cos 𝜔𝑡 which on 

substitution into eq.?? gives us 

−𝜔2𝐴 cos 𝜔𝑡 = −
𝑔

𝐿
[𝐴 cos 𝜔𝑡 −

𝐴3

6
cos3 𝜔𝑡]                                     

= −
𝑔

𝐿
[𝐴 cos 𝜔𝑡 −

𝐴3

6
(

1

4
cos 3𝜔𝑡 +

3

4
cos 𝜔𝑡)]       (6) 

We choose to keep only the terms in 𝜔𝑡 and neglect the third 

harmonic which gives us 

𝜔2 =
𝑔

𝐿
[1 −

𝐴2

8
]               (7) 

or for amplitudes not too large, 

𝜔 ≈ √
𝑔

𝐿
(1 −

𝐴2

16
)          (8) 

It’s interesting to see just how good the series expansions for the 

sin function are. Here’s a short table of percent errors, calculated 

for an angle 45 deg. 

sin 𝜃 0% 

𝜃 11% 

𝜃 −
1

3!
𝜃3 

0.35% 

𝜃 −
1

3!
𝜃3 +

1

5
𝜃5 

0.005% 

 

3.2.2 The Stiffness Averaging Approach 
Here we apply the results derived in Chapter 2.2.2. There we found 

how the oscillation frequency was related to the partial derivative 

of force with displacement, and took an average of this derivative 

over the displacement from 0 up to the amplitude A. We repeat that 

analysis here for the simple pendulum. 

Our ODE is 

𝜃̈ =
𝑔

𝐿
𝐹(𝜃),              𝐹(𝜃) =   𝜃 −

𝜃3

6
,           (9) 
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and the partial derivative 𝜕𝐹 𝜕𝜃⁄  is just 

𝜕𝐹

𝜕𝜃
= 1 −

𝜃2

2
 

Applying eq.?? from Chapter 2 and simplifying we find 

𝜔(𝐴) = √
𝑔

𝐿
√(1 −

7

48
𝐴2)  .           (10) 

We shall return to discuss this soon but first let’s take a more direct 

approach. As explained in chapter 2, the simplest ‘averaging’ 

approximation for the frequency uses the partial derivative at the 

half-amplitude mark 𝐹(𝜃 = 𝐴/2). So there is no need to do the 

series expansion, since we have an analytic form 𝐹(𝜃) =
(𝑔 𝐿⁄ )sin 𝜃. We proceed directly, 

𝜔 = √
𝑔

𝐿
√

𝜕𝐹(𝜃)

𝜕𝜃
|

𝐴 2⁄

= √
𝑔

𝐿
√cos(𝐴 2⁄ ) .         (11) 

3.2.3 The Energy Approach 
Here we apply the approach introduced in Section X.X.X where 

the period is calculated from the energy integral, evaluated over a 

quarter-period of a single oscillation of amplitude A the result 

multiplied by 4 to get the total period 

𝑇 = 4√
𝐿

𝑔
∫ √

1

2(𝐸 − 𝑉(𝜃))
𝑑𝜃

𝐴

0

         (12) 

Let’s take our time to understand how to use the integral, figure 3 

will provide some guidance. The pendulum is shown in three 

positions; vertically at rest, at its largest angle A, where it is also at 

rest, and intermediate angles 𝜃 where it is moving with angular 

velocity 𝜃̇. At the amplitude position, the total energy 𝐸𝐴 is wholly 

potential, 

𝐸𝐴 = 𝑚𝑔𝐿(1 − cos 𝐴) ,          (13) 

and at angles between 0 and A the potential energy is 

𝑉(𝜃) = 𝑚𝑔𝐿(1 − cos 𝜃).          (14) 
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Figure 3. 

 

Substitution eqs.13 and 14 into eq.12 gives the required expression 

for the period, 

𝑇 = 4√
𝐿

2𝑔
∫ √

1

(cos 𝜃 − cos 𝐴)
𝑑𝜃

𝐴

0

         (15) 

How have we chosen the integration limits? We need to cover the 

entire angle range experienced by the oscillating pendulum; this is 

just from 0 to A. To better understand the meaning of this 

calculation, let’s tave a look at the integral 

𝐼(𝐴) = ∫ √
1

(cos 𝜃 − cos 𝐴)
𝑑𝜃

𝐴

0

        (16) 

which is plotted in Fig.4. It’s value as 𝐴 → 0 is just 𝜋 √2⁄  and it 

rises sharply as 𝐴 → 𝜋. Now to make things a little clearer, we can 

re-write eq.15 using 𝐼(𝐴) and expressing the period in a more 

familiar form, the small angle approximation from the ODE 

analysis, 

𝑇(𝐴) = 2𝜋√
𝐿

𝑔

√2

𝜋
𝐼(𝐴).          (17) 

We see that as 𝐴 → 0 we recover the small angle approximation 

for the period exactly. 
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Figure 4. 

A comparison of the period from eq.17 with results from accurate 

numerical solution of the ODE is shown in Fig.5. Note that 

agreement is very good and especially that this is maintained for 

pendulum initial angles (amplitude) of greater than 90 degs, which 

of course corresponds to an inverted pendulum. The low-angle 

period of  𝑇 = 2𝜋√𝐿 𝑔⁄  = 1.4185036 s is also in agreement. 

 
Figure 5. 

 

3.2.4 He’s Energy Balance Approach 
Here we apply the method we used in Section.X.X where we used 

an approximation written as a power series of the state variable. 

This makes sense, since He’s approach results in a polynomial 

equation for the amplitude A.  

Starting with the expression for energy 

𝐸 =
1

2
𝑚𝐿2𝜃̇2 + 𝑚𝑔𝐿(1 − cos 𝜃)        
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we expand cos 𝜃, and assuming 𝜃(0) = 𝐴 and 𝜃̇(0) = 0 the energy 

balance equation leads to 

𝜃̇2 +
𝑔

𝐿
[𝜃2 −

𝜃4

12
+

𝜃6

720
] =

𝑔

𝐿
[𝐴2 −

𝐴4

12
+

𝐴6

720
].    (18) 

The residual function becomes 

𝑅(𝑡) = 𝜃̇2 +
𝑔

𝐿
[𝜃2 −

𝜃4

12
+

𝜃6

720
− 𝐴2 +

𝐴4

12
−

𝐴6

720
] 

Substituting 𝜃 = 𝐴 cos 𝜔𝑡, this becomes 

 

 

𝑅(𝑡) = 𝜔2𝐴2 sin2 𝜔𝑡 +
𝑔

𝐿
[𝐴2 cos2 𝜔𝑡 −

𝐴4

12
cos4 𝜔𝑡 +

𝐴6

720
cos6 𝜔𝑡 − 𝐴2 +

𝐴4

12
−

𝐴6

720
]      (19) 

 

 

and co-locating at 𝜔𝑡 = 𝜋/4 we end up with the result 

𝜔2 =
𝑔

𝐿
[𝜃2 −

1

8
𝜃4 +

7

2880
𝜃6]           (20) 

 

3.2.5 Forces, Potentials and Phase Planes 
Now we have derived expressions for approximations to forces and 

potentials, we are able to plot some of these out. Perhaps the most 

informative are the potentials, Fig.6. The exact potential, 𝐸 =

𝑚𝑔𝐿(1 − cos 𝜃) is plotted in red clearly showing its periodic 

nature. The first approximation, 𝐸 = 𝑚𝑔𝐿(𝜃2 2⁄ ) is plotted in 

green, and agrees well close to 𝜃 = 0. The second approximation 

𝐸 = 𝑚𝑔𝐿(𝜃2 2 − 𝜃2 24⁄⁄ ) is plotted in blue and shows an 

improved fit near 𝜃 = 0. Of course neither approximations can 

match the actual periodic function. 
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Figure 6. 

The force approximations are shown in Fig.7 where the first 

approximation 𝐹 = −𝑚𝑔𝐿𝜃 and the second approximation 𝐹 =

−𝑚𝑔𝐿(𝜃 − 𝜃3/6) are expressed as ratios of the exact force 𝐹 =

−𝑚𝑔𝐿 sin 𝜃. The plot therefore indicates where the agreement is 

10% or better. The lowest-order approximation has an error of 

around 2.5% at 90 degs while the higher-order approximation does 

better at around 0.5%. These values may be useful in planning 

laboratory activities. 

 
Figure 7. 

The phase diagrams are perhaps the most informative, since these 

capture the most information about the system. The phase diagram 

for the exact system is shown in Fig.8 which displays a series of 

localized stable solutions around the equilibrium points 0, 

2𝜋, 4𝜋, … . These orbits are stable for low amplitudes, below 180 

deg, anything larger results in rotation of the pendulum around its 
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centre, where it passes periodically ‘over the top. The exact 

trajectory depends on the initial velocity of the bob, at large 

velocities the angular displacement shows less ‘wobble’, as the 

effects of the restoring force become smaller, and the bob assumes 

more of a steady rotating motion. 

 
Figure 8. 

The two approximations to this are shown in Fig.9. As expected 

neither show any periodicity; the lower order approximation has a 

series of concentric ellipses with no sign of deformation for larger 

amplitudes. Such a phase diagram is typical for linear systems. The 

higher approximation begins to show some ‘tails’ and reveals some 

of the nonlinearity in the system. 

   
 Figure 9. 
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3.2.6 Roundup, Comparisons and Discussion 
Now we can evaluate the accuracy of our various approximations 

against the accurate numerical solution of the ODE. Table.1 

presents a few solutions and Fig.10 shows a plot of solutions versus 

amplitude. 

 
𝐴(deg) 𝑇𝑠𝑜𝑙𝑛  𝑇𝑒𝑛𝑒𝑟𝑔𝑦  

(eq.??) 

𝑇𝑠𝑡𝑖𝑓𝑓  

(eq.??) 

𝑇𝐻𝑒𝐸𝑛𝑒𝑟𝑔𝑦  

(eq.??) 

1 1.418530 1.418530 1.418530 1.418530 

45 1.475206 1.475206 1.475784 1.475832 

90 1.674317 1.674317 1.686894 1.687771 

120 1.947330 1.947436 2.006067 2.009172 

160 2.847034 2.847656 3.404045 3.410108 

 
Table 1. 

 

 
Figure 10. 

Clearly the energy approximation is the best and is highly accurate. 

This is unsurprising since it does not involve any power series 

expansion, truncation, and therefore explicit approximation. The 

energy approximation is as good as the numerical integration 

procedure. 

Nevertheless, we suggest that the stiffness approach, eq.11, and 

He’s energy approach, eq.20, are also of great use. They provide 

decent approximations up to around 90 degs, but their strength lies 

in the fact that they provide an analytical solution – a ‘formula’ – 

which allows us to see at once how the amplitude affects frequency 

and period. In this case, a larger amplitude decreases the frequency 
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and increases the period. Also the formulae give us a feel of what 

magnitude of amplitude will lead to a substantial deviation from 

the zero-amplitude case. For example in eq.?? we could estimate 

the amplitude which makes the term (7 48⁄ )𝐴2 substantially less 

than 1. A simple calculation suggests this is around 65 degs. 

3.3 The Dumbbell Pendulum 

3.3.1 System Dynamics 
This is a development of the simple pendulum where we add a 

second mass and connect the masses via a rod whose mass we 

ignore. The dumbbell is arranged to rotate in the vertical plane 

around a point located somewhere along the rod. The location of 

this point will be a system parameter a. The scenario is shown in 

Fig.11 with forces on the masses indicated. 

 
Figure 11. Cross shows mid-point, not cofm. 

The rotational dynamics  of this system is governed by the ODE, 

where we neglect damping, 

𝐼𝜃̈ = 𝜏,           (21) 

where the torque (positive in a clockwise direction) is 

𝜏 = [𝑚2(𝐿 2⁄ − 𝑎) − 𝑚1(𝐿 2⁄ + 𝑎)]𝑔 sin 𝜃          (22) 

and the moment of inertia around the pivot point is 

𝐼 = 𝑚1(𝐿 2⁄ + 𝑎)2 + 𝑚2(𝐿 2⁄ − 𝑎)2        (23) 
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and substituting into eq.21 we have 

𝜃̈ = −
𝑚1(𝐿 2⁄ + 𝑎) − 𝑚2(𝐿 2⁄ − 𝑎)

𝑚1(𝐿 2⁄ + 𝑎)2 + 𝑚2(𝐿 2⁄ − 𝑎)2
 𝑔 sin 𝜃.          (24) 

We can reduce this to a familiar equation for the simple pendulum 

𝜃̈ = −
𝑔

𝐿′
sin 𝜃 

where we have defined the equivalent length 

𝐿′ =
𝑚1(𝐿 2⁄ + 𝑎)2 + 𝑚2(𝐿 2⁄ − 𝑎)2

𝑚1(𝐿 2⁄ + 𝑎) − 𝑚2(𝐿 2⁄ − 𝑎)
        (25) 

which means we can effectively replace the dumbbell with a simple 

pendulum of this equivalent length. 

Eq.25 is rather cumbersome, so we shall set 𝑚2 = 𝑚1 and continue 

with this simplification unless we state otherwise. Then the 

expression for equivalent length becomes much more transparent 

𝐿′ =
𝐿2

4𝑎
+ 𝑎              (26) 

We shall also assume, (at least for the moment), that 𝑎 > 0 

therefore 𝐿′ > 0.  

3.3.2 Equivalent length and small-angle oscillations 
Using eq.26 we can immediately write down the expression for 

the frequency of small-angle oscillations 

𝜔0
2 =

𝑔

(
𝐿2

4𝑎
+ 𝑎)

             (27) 

Let’s look at a few examples with various values of a and 𝐿′ and 

their oscillation frequencies, Fig.12. 



Physica-1A      16 
 

 
Figure 12. 

Starting with the pivot point at the centre of the top mass, we have 

of course the simple pendulum. Progressively lowering the pivot 

we find that 𝐿′ steadily increases and the  oscillation frequency 

decreases. When we hit the mid-point between the masses, 𝐿′ = ∞ 

and the oscillation frequency is zero, not surprising since there is 

no net torque on the system. 

A plot of effective length versus a is shown in Fig.13 showing the 

asymptote as 𝑎 → 0. Remember that this is drawn for 𝑚2 = 𝑚1. 

 
Figure 13. 

 

Of course you can argue for the frequency variation with pivot 

point location by direct use of the two torques on the system. As 

the pivot point is raised, the torque on the upper mass decreases 

and the torque on the lower mass increases. So there is a net 

increase in the restoring torque which leads to an increase in 

oscillation frequency. 
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3.3.2 Pivot point located below the mid-point 
When the pivot point is located below the mid-point, we have 

effectively an inverted pendulum. All the above analysis must 

apply, we have 𝑎 < 0 and it follows that 𝐿′ < 0, so we must take 

care in applying eq.27 to calculate the oscillation frequency. But 

there is another way we could proceed which does not require a 

negative effective length. 

We could think of the equivalent situation, where the system is 

rotated 180 deg so that the pivot point finds itself above the mid-

point; of course we need to change the initial displacement angle. 

The transformation we are thinking about is shown in Fig 14. The 

original situation is shown in (a) where the experimental 

configuration is shown together with the equivalent pendulum in 

blue. The initial angle is 𝜃𝑖𝑛𝑖𝑡. The angle of oscillation is indicated 

here by the blue arc. The target situation is shown in (b) and in (c) 

we show the original situation rotated. Remember this situation has 

the pivot point located above the mind-point but has an initial angle 

of 𝜃𝑖𝑛𝑖𝑡 + 𝜋, so it looks the same as the original situation. 

 
Figure 14. 

 

3.3.3 Large Amplitude Period calculations 
The energy method is of course ideal for making these calculations. 

We repeat the expressions required where we are using the 

effective length 𝐿′ and we will use the above transformation when 

needed to make this positive. 
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𝑇(𝐴) = 2𝜋√
𝐿′

𝑔

√2

𝜋
𝐼(𝐴).          (28) 

We must pay attention to the limits in the integral; for our 

‘standard’ system we have 

𝐼(𝜃𝑖𝑛𝑖𝑡) = ∫ √
1

(cos 𝜃 − cos 𝜃𝑖𝑛𝑖𝑡)
𝑑𝜃

𝜃𝑖𝑛𝑖𝑡

0

,        (29) 

and for our transformed system we have 

𝐼(𝜃𝑖𝑛𝑖𝑡) = ∫ √
1

(cos 𝜃 − cos(𝜃𝑖𝑛𝑖𝑡 + 𝜋))
𝑑𝜃

𝜃𝑖𝑛𝑖𝑡+𝜋

𝜃𝑖𝑛𝑖𝑡

.        (30) 

A plot of period versus a is shown in Fig.15. Note that the plot is 

labelled with a in the range − 𝐿 2⁄ … 𝐿 2⁄ ; this is only for clarity, 

we do not use negative values of a! 

 
Figure 15. 

 

3.4 The Physical Pendulum 
This is a standard textbook example, where the pendulum’s mass 

is distributed throughout a body which is then pivoted, and its 

oscillations depend on the location of the pivot point. We shall take 

a specific example, a uniform bar of length 𝐿shown in Fig.??.. The 

pivot point is located at the yellow point which is located above the 

centre of mass of the bar shown by the red point. As usual we must 
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consider the torque applied by gravity around the pivot point and 

need to know the moment of inertia of the bar around this point. 

 
 

When displaced an angle 𝜃 as shown, the restoring torque due to 

the weight of the bar is just 

𝜏 = −𝑚𝑔𝐿𝑐𝑚 sin 𝜃              (𝑥𝑥) 

where 𝐿𝑐𝑚 is the distance form pivot point to the centre of mass. 

Now the moment of inertia for the bar about its centre of mass turns 

out to be  (1 12⁄ )𝑚𝐿2 so using the parallel axis theorem, the 

moment of inertia about the pivot point becomes 

𝐼𝑃 =
1

12
𝑚𝐿2 + 𝑚𝐿𝑐𝑚

2               (𝑥𝑥) 

which is seen to increase as the offset of the pivot point 𝐿𝑐𝑚 

increases. This will have an effect on the frequency of oscillation 

as we shall see. The dynamics of the system is governed by the 

usual ODE 

𝐼𝑃𝜃̈ = 𝜏 

i.e., 

(
1

12
𝑚𝐿2 + 𝑚𝐿𝑐𝑚

2 ) 𝜃̈ = −𝑚𝑔𝐿𝑐𝑚 sin 𝜃              (𝑥𝑥) 

which again reduces to the familiar simple pendulum expression 

𝜃̈ = −
𝑔

𝐿′
sin 𝜃 
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where the equivalent length 𝐿′ is simply 

𝐿′ =
𝐿2

12𝐿𝑐𝑚
+ 𝐿𝑐𝑚            (𝑥𝑥) 

which reminds us of eq.?? for the dumbbell pendulum. Applying 

the small angle approximation sin 𝜃 ≈ 𝜃 we obtain the oscillation 

frequency 

𝜔2 =
𝑔

(
𝐿2

12𝐿𝑐𝑚
+ 𝐿𝑐𝑚)

              (𝑥𝑥) 

which of course resembles eq.?? This is interesting  approaches 

since it shows the dependence of the frequency on 𝐿𝑐𝑚; due to the 

first term in the denominator, the frequency will approach zero as 

𝐿𝑐𝑚 approaches zero, i.e. as the pivot point approaches the centre 

of mass. 

You might find this result a little surprising, since looking at it 

slightly differently, as the length of the part of the bar below the 

pivot point increases, so does the oscillation frequency. This is 

clearly not the same as in the case of the simple pendulum. 

 


