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Chapter 2 
Nonlinear Oscillations 

2.1 A Brief Introduction 
Many physical oscillators or oscillators applied in engineering are 

non-linear; this means the force-extension curve is non-linear. 

Instead of the ODE describing a linear system, such as a mass on a 

spring where the force is clearly linear, 

𝑚�̈� = 𝑔(𝑥),        𝑔(𝑥) =  −𝑘𝑥,       (1) 

we have the more general system 

𝑚�̈� = 𝑓(𝑥),             (2) 

Where f(x) is not simply proportional to x but may contain powers 

of x or more exotic functions such as trig functions. We shall start 

by considering an important function which appears in the Duffing 

oscillator, 

𝑚�̈� = −𝑘𝑥 − 𝛼𝑥3           (3) 

Before we get into details, let’s have a look at some basic facts 

about this equation, such as where it is applied. Many systems 

comprising elastic elements can be modelled using simple linear 

springs, but often when the displacement becomes large this simple 

model is inadequate. A well-known example is the cantilever 

beam, Fig.1 with one end fixed to a support and the other connected 

to a load. 

 
Figure 1. 
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A mass placed on this beam will obey eq.3 including large 

deflexions. Note that the beam is symmetrical in a vertical sense, 

the restoring force is the same for an upward and equivalent 

downward deflexion. This is reflected in the cubic power in eq.3, a 

quadratic power would be incorrect; it does not have the correct 

symmetry. 

Graphs of force 𝑓(𝑥) = −𝑘𝑥 − 𝛼𝑥3 and potential energy 𝑉(𝑥) =
1

2
𝑘𝑥2 + 1

4
𝛼𝑥4 are shown together in Fig.2 

 
Figure 2. 

which are again symmetrical about the equilibrium position 𝑥 = 0. 

The curves for the linear case 𝑓(𝑥) = −𝑘𝑥 are drawn in red. These 

curves are simple, e.g., the potential curve is symmetric and only 

has a single minimum. Close to the minimum the linear 

approximation looks quite good. 

Finally we consider the phase plane for eq.3, a plot of �̇� versus x. 

If you are unsure about the meaning of the phase plane and how to 

construct it, review Chapter X.X. In this case we have a series of 

concentric ellipses, each corresponds to a pair of initial conditions 

𝑥(0), �̇�(0) in other words to a different amplitude of oscillation. 

All trajectories are closed, so each particular oscillation continues 

with the same amplitude through time; trajectories are smooth 

ellipses which is a hallmark of linear oscillations. 
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Figure 3. 

 

2.2 The Duffing Equation  

2.2.1 Variable Stiffness defines Variable Frequency 
The form of the force 𝑓(𝑥) = −𝑘𝑥 − 𝛼𝑥3 is symmetric around 

the origin, since it only contains odd powers of x.  We can easily 

find the locations where  the force is zero by solving −𝑘𝑥 −

𝛼𝑥3 = 0 which has a single solution 𝑥 = 0. 

We now wish to find an expression for the frequency of oscillation 

around this point. Let’s start by reminding ourselves of the 

argument for a linear oscillator where we start with the ODE 

𝑚�̈� = 𝐹(𝑥) = −𝑘𝑥,  

And try a solution of the form 𝑥(𝑡) = 𝐴 cos 𝜔𝑡 which gives 

following substitution into the ODE 

−𝑚𝜔2 = −𝑘,    hence   ω = √𝑘 𝑚⁄             (4) 

which is very familiar. Let’s focus on the physical meaning of k the 

spring constant or ‘stiffness’. This is the force per extension which 

we can write formally as 

−𝑘 =
∆𝐹

∆𝑥
=   

∂F

∂x
. 

These are equal since the force is proportional to displacement in 

this case. Now let’s replace k in eq.4 with the partial derivative to 

give us 
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ω = √−
1

𝑚

∂F

∂x
 .            (5) 

The insight here, is that the frequency of oscillation is related to the 

gradient of the force-extension graph. Of course you knew that 

already, but it’s nice to have it stated in maths. We shall now make 

use of this expression in discussing the frequencies of non-linear 

oscillations. 

2.2.2 Application to the Duffing Oscillator 
Let’s take our Duffing oscillator, eq.3, and move it away from the 

origin of the force-extension curve so it oscillates, hypothetically 

around a new location 𝑥0. Note this may require some magic, since 

we do not want to interfere with the force-extension function. 

Figure 4 illustrates what we have in mind; the mass shown to a 

distance x from the origin together with the forces at these points. 

We know it is the gradient of the force-extension curve, here near 

𝑥0 that determines the oscillation frequency, which from the figure 

is just 

𝐹(𝑥) − 𝐹(𝑥0)

𝑥 − 𝑥0
=

𝜕𝐹

𝜕𝑥
|

𝑥0

,            (6) 

where the gradient is evaluated at 𝑥0. You may be thinking that 

 
Figure 4. 

this looks as though it may come from the Taylor expansion of the 

force, and you are right; here it is, 

𝐹(𝑥) = 𝐹(𝑥0) +
𝜕𝐹

𝜕𝑥
|

𝑥0

(𝑥 − 𝑥0) +
1

2!

𝜕2𝐹

𝜕𝑥2
|

𝑥0

(𝑥 − 𝑥0)2 + ⋯ (7) 
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So now we can generalize eq.5 for any point 𝑥0 on the non-linear 

force-extension curve, 

ω = √−
1

𝑚

𝜕𝐹

𝜕𝑥
|

𝑥0

 .          (8) 

For our Duffing equation this becomes 

ω(𝑥0) = √
𝑘

𝑚
+

3𝛼𝑥0
2

𝑚
.           (9) 

We see something nice in this expression; the first term inside the 

root is just our linear term, the second term adds a correction to the 

frequency due to the cubic force term, and this acts to increase the 

oscillation frequency. We can understand this, since the stiffness 

of the spring increases with 𝑥0. 

However, eq.9 has very limited applicability in fact it is almost 

useless, since the frequency it predicts is constantly changing with 

𝑥0 as the mass is oscillating! What we need is to take some sort of 

average, and we shall now turn to doing this. 

2.2.3 Frequency from the Averaged force gradient 
Let’s start with oscillations with an amplitude A and ask how to 

apply eq.8 to make a sensible approximation of the frequency. The 

situation is shown in Fig.5. Taking forward the idea of using an 

average, it makes sense to calculate the frequency at the mid-range 

oscillator motion interval [0 − 𝐴], i.e., 𝐴/2. 

 
Figure 5 

Applying this to the Duffing force expression gives us 
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ω(𝐴) = √
𝑘

𝑚
+

𝛼

𝑚

3

4
𝐴2 .          (10) 

Now, unlike eq.9 this expression is very useful since it predicts how 

the oscillation frequency depends on amplitude. At this point it is 

interesting to compare its predictions, with results obtained by 

accurate numerical solutions of the ODE, eq.10, look forward to 

Table.1. The results shown there are amazing, for each amplitude 

the agreement is excellent, but the most amazing result is that the 

approximation works over a huge range of amplitudes. 

2.2.4 Generalizing the Approach 
Rather than taking a single point midway through the amplitude 

range, we could divide the amplitude range into(𝑁 − 1) intervals, 

calculate 𝜔2 for each interval and take the average of these. You 

can see the idea in Fig.6 where we have chosen three intervals. 

 
Figure 6. 

 

We must extend eq.9, remembering to divide by 3 to get the 

average. 

ω = √−
1

3𝑚
(

𝜕𝐹

𝜕𝑥
|
𝐴/4

+
𝜕𝐹

𝜕𝑥
|

𝐴/2
+

𝜕𝐹

𝜕𝑥
|

3𝐴/4
)        (11)  

Applying this to our Duffing oscillator, we find, 

ω(𝐴) = √
1

3𝑚
(𝑘 +

3

16
𝛼𝐴2 + 𝑘 +

3

4
𝛼𝐴2 + 𝑘 +

27

16
𝛼𝐴2) , 
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which simplifies to 

ω(𝐴) = √
𝑘

𝑚
+

𝛼

𝑚

7

8
𝐴2 .          (12) 

If you would like an expression for the general case, then here it is 

𝜔2 =
1

𝑁 − 1
∑ 𝜔𝑖

2

𝑁−1

𝑖=1

,           𝜔𝑖
2 = −

1

𝑚

𝜕𝐹

𝜕𝑥
|

𝑥𝑖

          (13) 

 

2.2.3 Limitations of this approach 
The kernel of the approach described above is to calculate the 

average of  the derivative 𝜕𝐹 𝜕𝑥⁄  over the interval experienced by 

the oscillator, which we have taken as the amplitude of oscillation. 

This implies that the amplitude is well-defined in limiting this 

interval. For the Duffing equation where the nonlinearity is 

symmetric in x then the oscillator will move between −𝐴 and +𝐴 

and so we can use the amplitude in calculating the approximate 

frequency. Things aren’t so straightforward if the nonlinearity is 

not symmetric, e.g., if it includes even powers of x. We shall 

discuss this in detail in Section.X.X. 

2.2.4 The Energy Approach 
We have a conservative system since there is no damping. We can 

express the total constant energy E as a sum of kinetic energy and 

potential energy terms, 

1

2
𝑚�̇�2 + 𝑉(𝑥) = 𝐸 ,           (14) 

from which we have 

�̇� = √
2(𝐸 − 𝑉(𝑥))

𝑚
,     so     

𝑑𝑡

𝑑𝑥
= √

𝑚

2(𝐸 − 𝑉(𝑥))
          (15) 

which is integrated 

𝑡 = ∫ 𝑑𝑡′ = ∫ √
𝑚

2(𝐸 − 𝑉(𝑥′))
 𝑑𝑥′,           (16) 

𝑥

0

𝑡

0
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where t is the time taken for the oscillator to move between 

positions 0 and x. Now we can apply this to the Duffing oscillator. 

The energy equation is, in detail, 

1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

4
𝛼𝑥4 = 𝐸    (17) 

and let’s apply this to the situation shown in Fig.7 where the energy 

E corresponds to 𝑥 = 𝐴, where A is the oscillation amplitude.  

 
Figure 7. 

 

We therefore have 

𝐸 =
1

2
𝑘𝐴2 +

1

4
𝛼𝐴4, 

and the period becomes 

𝑇 = 4 ∫ √
𝑚/2

(1
2
𝑘𝐴2 + 1

4
𝛼𝐴4 − 1

2
𝑘𝑥2 − 1

4
𝛼𝑥4)

 𝑑𝑥′.   (18) 
𝐴

0

 

We shall not even think about hunting for an analytical solution 

but rather employ numerical integration of eq.18. The results are 

given in Table.?? where we show excellent agreement between 

this approximation to T and the actual ODE solution. 

2.2.5 Duffing Equation, He’s Energy Balance Approach 
He’s approach [cite] considers both the total energy of the system, 

and the fact that we are looking for an oscillatory solution. It’s 

advantage over the above energy method is that it gives us an 

analytical expression for the approximate frequency, and it is 

suggested that this may be valid for large amplitudes. 

We start with the expression for the total energy of our system 
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1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

4
𝛼𝑥4 = 𝐸                (19)     

which is an invariant. We assume the initial conditions 𝑥(0) = 𝐴, 

�̇�(0) = 0. Eq.19 then becomes, 

1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

4
𝛼𝑥4 =   

1

2
𝑘𝐴2 +

1

4
𝛼𝐴4   

i.e.,  

1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

4
𝛼𝑥4 −   

1

2
𝑘𝐴2 −

1

4
𝛼𝐴4 = 0      (20)   

which we assume is valid for all times. We then use the following 

‘trial’ function 𝑥(𝑡) = 𝐴 cos 𝜔𝑡 and substituting this into eq.20 we 

expect to find a time-dependent error or residual 𝑅(𝑡) function 

𝑅(𝑡) =
1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

4
𝛼𝑥4 −   

1

2
𝑘𝐴2 −

1

4
𝛼𝐴4    (21) 

Performing the substitution we find 

 

𝑅(𝑡) = 𝑚𝜔2 sin2 𝜔𝑡 + 𝑘 cos2 𝜔𝑡 +
1

2
𝛼𝐴2 cos4 𝜔𝑡 − 𝑘 −

1

2
𝛼𝐴4         (22) 

 

The residual can never be zero for all t since eq.2 is nonlinear and 

our trial function can never satisfy it at every point in time. This 

method proceeds by collocation where we enforce 𝑅(𝑡′) = 0 at 

one specific time 𝑡′. He suggests we set 𝜔𝑡′ = 𝜋 4⁄  which 

corresponds to 1/8th of the period. Eq.22 then reduces to 

𝑚𝜔2 + 𝑘 +
1

4
𝛼𝐴2 − 2𝑘 − 𝛼𝐴2 = 0       (23) 

and so we have the frequency 

𝜔 = √
𝑘

𝑚
+

3

4

𝛼

𝑚
𝐴2         (24) 

which compares favourably with eq.10. You may be concerned 

about the above analysis, the choice of co-location point does seem 

somewhat arbitrary, and it seems that we are not provided with any 

guidance on why or how it is chosen1. 

 
1 Our own research (unpublished) suggests that the co-location point 

may be obtained by an optimization of eq.22 looking for the minimum 

of some function of the residual. 
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2.2.6 Roundup and Results 
We have applied several methods to obtain approximations to the 

frequency of oscillations to the Duffing Equation. Let’s compare 

the results of these, shown to a higher precision than we usually 

report in Table ??. Then let’s reflect on the strengths and limitations 

of these approaches. 

 

𝐴 𝑇𝑠𝑜𝑙𝑛 𝑇𝑒𝑛𝑒𝑟𝑔𝑦 

(eq.15) 

𝑇𝑠𝑡𝑖𝑓𝑓 

(eq.11) 

𝑇𝐻𝑒𝐸𝑛𝑒𝑟𝑔𝑦 

(eq.18) 

0.1 6.259762 6.259762 6.255876 6.259755 

0.5 5.768846 5.768846 5.691445 5.765846 

1.0 4.768022 4.768022 4.588590 4.749642 

10.0 0.736286 0.736290 0.667895 0.720731 

100.0 0.074150 0.074158 0.067166 0.072547 
Table ?? 

 

The first thing to notice is that the approximations are very good 

over an enormous range of amplitudes. The largest error is for the 

𝑇𝑠𝑡𝑖𝑓𝑓 calculation just over 9%; it is interesting to note the 𝑇𝑒𝑛𝑒𝑟𝑔𝑦 

calculation has an error of around 0.01% at this amplitude. Indeed 

the energy approximation is clearly the best. 

Unfortunately the energy approach requires the numerical 

integration of a function, eq.15 does not give us an analytical result, 

i.e., a ‘formula’. The stiffness approach gives us eq.10 and eq.12, 

both tell us that increasing A will increase the oscillation frequency 

and therefore reduce its period. So at once, we have gained some 

good understanding of the effects of the nonlinearity, even if the 

numerical predictions have a little error. 

We do have some reservations about the stiffness and He’s energy 

approaches (which may have led to their larger errors). The 

stiffness approach works for symmetric force functions (cubic, 

quintic, etc.,) but application to non-symmetric force functions 

(quadratic, quartic) may need some careful thought. The energy 

balance method looks straightforward, but the choice of collocation 

point seems arbitrary. 
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2.3 The Helmholtz Oscillator 

2.3.1 Origins and Features 
In comparison with the pure cubic nonlinearity characterizing the 

Duffing equation, here we consider the equation with a pure 

quadratic nonlinearity, the Helmholtz or ‘ear’ equation 

𝑚�̈� = −𝑘𝑥 − 𝛽𝑥2           (25) 

So where did this equation originate? It was invented by the 

physicist Helmholtz in the 19th Century while looking at the 

detailed structure of the ear-drum. Like any drum the ear-drum has 

a thin membrane stretched over a supporting frame or ring, but 

unlike a modern drum, the membrane is not stretched flat, but is 

slightly curved, see Fig.8. 

 
Figure 8. 

This shape gives the ear-drum some interesting properties which 

we shall nor try to understand. Compare the cross-sections from 

two suggested drumskins in Fig.9. In (a) we have a flat skin and 

 
Figure 9. 

a force applied up or down (red arrows) would give the same 

deflexions up or down (blue arrows). In (b) we have a curved skin, 

and in this case a force down would give a larger deflexion than 
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the same force up. You might like to do a thought experiment: Cut 

a tennis ball in half and push it up from the inside; there will be a 

tiny displacement. But if you push it down from the top, then the 

displacement will be large since the ball will deform. Actual 

experiments with tennis balls confirm this. 

The question is what sort of non-linearity can explain this, and the 

answer is a quadratic nonlinearity. Let’s see why. The plot in 

Fig.10 shows the force 

𝐹(𝑥) = −𝑘𝑥 − 𝛽𝑥2            (26) 

around the origin. If you take a small positive displacement 

(upwards) then there is a larger increase in force than if you take 

the same negative (downward) displacement. That’s what we want. 

 
Figure 10. 

Figure 10 also shows the potential 

𝑉(𝑥) =
1

2
𝑘𝑥2 +

1

3
𝛽𝑥3              (27) 

which is interesting. There is a maximum at 𝑥 = − 𝑘 𝛽⁄ , so initial 

values of x less than this will escape the potential well and there 

will be no oscillation. This maximum in turn defines a finite range 

of initial x where oscillations may be sustained, and this is 

confirmed by the phase plot in Fig.11. 
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Figure 11. 

 

From the above potential and phase diagram plots, we see that the 

system is not symmetrical in x unlike the Duffing oscillator, and 

this asymmetry becomes more pronounced as the amplitude of 

oscillations increases. We expect the oscillation time-traces to 

reflect this asymmetry, they will become ‘distorted’ and will no 

longer be harmonic; we shall not observe sine curves. Figure.12 

shows this where time traces for two initial conditions, 𝑥𝑖𝑛𝑖𝑡 =

0.25 and 𝑥𝑖𝑛𝑖𝑡 = 0.60 are shown. Look at the phase diagram, find 

these initial conditions (zero velocity) and follow the trajectories. 

 
Figure 12. 
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Figure 12 (ctd) 

These traces are fundamentally different. The top trace for 𝑥𝑖𝑛𝑖𝑡 =

0.25 appears (almost) harmonic, but on closer inspection its 

maximum and minimum values are not equal and opposite as they 

should be; the curve is not symmetric about 𝑥 = 0. This means that 

we cannot sensibly define the amplitude of the oscillation. This is 

even more pronounced in the trace for 𝑥𝑖𝑛𝑖𝑡 = 0.60 where the 

magnitudes of peaks and troughs are wildly different. Also you can 

see that the time-trace shape is far from sinusoidal, the troughs are 

much flatter than the peaks. This is because the oscillator is close 

to the ‘hump’ of the potential. A larger value of 𝑥𝑖𝑛𝑖𝑡 would take it 

over the hump; there would be no oscillations, but the time-trace 

would diverge into nothingness. The takeaway from this is simple, 

the concept of amplitude has no mathematical significance, even 

though experimenters may report amplitude in their investigations. 

2.3.2 Oscillation Frequency 
Here we apply the analysis from 2.2.1 to approximate the 

oscillation frequency. Remember we need to average the value of 

𝜕𝐹 𝜕𝑥⁄  over the interval experienced by the oscillator. For the 

Duffing oscillator, the amplitude was a natural (and correct) 

measure of this interval. In our current case we cannot simply 

repeat the previous analysis, since amplitude has no meaning. 

Instead we much choose another way of characterizing the 

oscillator interval, and we select the actual interval experienced 

between the smaller value 𝑥− and the larger value 𝑥+. How do we 

define and obtain these values? Well the potential energy curve 

provides the answer. If we give an initial location 𝑥𝑖𝑛𝑖𝑡 and assume 

zero initial speed, then the oscillator will start off with a potential 

energy 𝐸𝑖𝑛𝑖𝑡 corresponding to this location. Since the system is 

conservative, then the energy will always equal this. So if we start 

off  at rest with 𝑥𝑖𝑛𝑖𝑡 = 𝑥+, then the oscillator will move and come 
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to rest at 𝑥− where the potential energy is just 𝐸𝑖𝑛𝑖𝑡. This is 

sketched in Fig.13. 

 
Figure 13. 

In order to obtain an expression for the approximate oscillation 

frequency, we must first determine the interval [𝑥−, 𝑥+] for a 

chosen initial 𝑥+. Equating potential energies at the interval ends 

we have 

𝐸 =
1

2
𝑘𝑥−

2 +
1

3
𝛽𝑥−

3 =
1

2
𝑘𝑥+

2 +
1

3
𝛽𝑥+

3           (28) 

Since 𝑥+(and system coefficients) are known, this is essentially a 

cubic equation in 𝑥− which we can solve. Therefore we know the 

required interval. 

Using this interval, we can now calculate the average of 𝜕𝐹 𝜕𝑥⁄  

which is straightforward since 

𝜕𝐹

𝜕𝑥
= −𝑘 − 2𝛽𝑥                 (29) 

is linear in x. The expression for the approximate oscillation 

frequency can then be written 

ω = √
1

𝑚
(𝑘 + 𝛽(𝑥+ + 𝑥−))           (30) 

You must be careful in interpreting this equation. It suggests that 

the frequency increases as (𝑥+ + 𝑥−), which is, of course, correct. 

But in reality (𝑥+ + 𝑥−) never increases! This is a consequence of 

the asymmetry of the energy curve; if you increase 𝑥+ then the 

absolute value of 𝑥− increases by a larger amount. So the sum 

(𝑥+ + 𝑥−) actually decreases. We therefore are led to conclude that 
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if you increase 𝑥𝑖𝑛𝑖𝑡, then the frequency will decrease, and the 

period will increase. 

2.3.3 The Energy equation. 
Here we proceed as in Section 2.2.4. Since the force is given by 

𝐹 = −𝑘𝑥 − 𝛽𝑥2 the associated potential is 𝑉(𝑥) = 1

2
𝑘𝑥2 + 1

3
𝛽𝑥3 

so we are tempted to write the energy equation as 

1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 +

1

3
𝛽𝑥3 = 𝐸 =

1

2
𝑘𝐴2 +

1

3
𝛽𝐴3,     (31) 

and hence calculate the period 

𝑇 = 4 ∫ √
𝑚/2

(1
2
𝑘𝐴2 + 1

3
𝛽𝐴3 − 1

2
𝑘𝑥2 − 1

3
𝛽𝑥3)

 𝑑𝑥′.   (32) 
𝐴

0

 

This is incorrect! As we have seen, the amplitude A has no 

theoretical meaning, the oscillation interval is [𝑥−, 𝑥+] so we must 

use this interval in the integral eq.32. Since this interval 

corresponds to half a wavelength, the integral becomes 

𝑇 = 2 ∫ √
𝑚/2

(1
2
𝑘𝑥+

2 + 1
3
𝛽𝑥+

3 − 1
2
𝑘𝑥2 − 1

3
𝛽𝑥3)

 𝑑𝑥′.   (33) 
𝑥+

𝑥−

 

Results of calculating the period from eq.33 together with accurate 

numerical solutions of the ODE are shown in Table.xx.  

2.3.4 Roundup, Comparisons and Discussion 
First, we summarize the data for the stiffness and energy 

approximations, comparing with an accurate numerical solution of 

the governing ODE. 

Table?? is organized from left to right according to our 

computational protocol. For the energy approximation, (i) we 

choose 𝑥𝑖𝑛𝑖𝑡 ≡ 𝑥+ then (ii) use eq.28 to calculate 𝑥− and finally 

(iii) use 𝑥+ and 𝑥− to calculate the period from eq.33. The 

numerical solutions have initial condition 𝑥𝑖𝑛𝑖𝑡. For the stiffness 

approximation, (i) select 𝑥𝑖𝑛𝑖𝑡 and compute the associated energy 

E. (ii) Use eq.?? to find 𝑥−. This establishes the oscillator’s interval 

of x so we can calculate the average 𝜕𝐹 𝜕𝑥⁄  and (iii) use eq.?? to 

calculate the oscillation frequency and then period. 

Table?? shows periods calculated from both the stiffness 

approximation, eq.30 and the energy approximation, eq.33, and 
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Fig?? shows these as a function of 𝑥𝑖𝑛𝑖𝑡. Agreement is good, 

especially for the energy approximation which has a maximum 

error of around 0.5%. As expected, the stiffness approximation 

loses accuracy for larger values of 𝑥𝑖𝑛𝑖𝑡 as this involves a truncated 

series. 

 
𝑥𝑖𝑛𝑖𝑡 𝑥− 𝑇𝑠𝑜𝑙𝑛 𝑇𝑒𝑛𝑒𝑟𝑔𝑦  𝑇𝑠𝑡𝑖𝑓𝑓  

0.10 -0.1053 6.298796 6.298796 6.295711 

0.20 -0.2225 6.350691 6.338294 6.336880 

0.40 -0.5072 6.629357 6.629355 6.552098 

0.50 -0.6910 6.952919 6.952919 6.788172 

0.60 -0.9394 7.706476 7.670511 7.277306 
Table?? 

 

 
Figure?? 

While the energy approximation is the best, since it is the most 

accurate, we suggest that the stiffness approximation is equally 

good, but for a different reason. The fact is that eq.30 presents us 

with an analytical expression which guides us in understanding 

how the frequency changes with the initial conditions. Of course 

this requires us to have an understanding of the meaning of 

(𝑥+ + 𝑥−) which can be gleaned from a glance at the V(x) curve. 

So there seems a place for both approximations which should be 

employed before the solution of the ODE is attempted. 


