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Chapter 1 1 

Introduction to Oscillations 2 

1.1 A Brief Introduction 3 

This chapter lays down the basic physics concepts and 4 

mathematical language and tools needed to understand the 5 

phenomenon of oscillation. Subsequent chapters will apply this 6 

material in several interesting scenarios, but we need to start with 7 

the basics. We use the term ‘oscillation’ to refer to a device or 8 

system which has a ‘periodic motion in time’, by which we mean 9 

that if we make an observation at a certain time t then at a later time 10 

t + T and then at an even later time t + 2T then the observations 11 

will be identical. Think of a rotating machine such as an electric 12 

motor or a car engine; their shafts return to their initial place (angle) 13 

some 2000 – 3000 times per second. So if we measure some 14 

property y of the system over time and find that 15 

𝑦(𝑡 + 𝑇) = 𝑦(𝑡)        (1) 16 

then the system is oscillating with period T in seconds. The 17 

frequency of oscillation is just 1 𝑇⁄  in Hertz. 18 

You may have already studied a mass hanging from a spring, and 19 

you know that it oscillates up and down, returning to its starting 20 

location at regular intervals T secs. You may also have learned that 21 

the position of the mass follows an expression like this 22 

𝑦(𝑡) = 𝐴 cos (
2𝜋

𝑇
𝑡)                           (2) 23 

though some folk use the sin function.  But this is not the only way 24 

to represent these oscillations. You may have seen in a more 25 

enlightened text the use of complex numbers with an expression 26 

like this 27 

�̂�(𝑡) = �̂�𝑒𝑖(2𝜋 𝑇⁄ )𝑡                     (3) 28 

Don’t worry, we shall explain what this means in detail in section 29 

??. The thing is that some authors suggest that when you see eq.2 30 

then you ‘see’ in your mind an oscillating system, whereas when 31 

you see eq.3 you do not, and therefore eq.2 is preferred. This is 32 
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nonsense since what you ‘see’ depends on your learned experience 1 

of the maths. In this chapter we shall make extensive use of 2 

complex notation. 3 

There is also another limitation of many texts which make almost 4 

exclusive use of the sin or cos function in their discussion without 5 

any rationale for this choice. As we shall see in section 2 when we 6 

look at traces of oscillation in the real world, we do not see any 7 

simple sin or cosine functions, but the traces have more complex 8 

shapes.  9 

And there’s a third limitation. Most texts discuss ‘linear’ 10 

oscillations and therefore lead us to believe that most real-world 11 

oscillations are linear. This is an illusion, and will be addressed in 12 

section?? 13 

When we describe oscillations, we usually draw a graph of some 14 

property against time, e.g., the height of a car above the ground 15 

when it bounces after travelling over a bump. We shall see lots of 16 

these graphs below. But there’s another way of plotting oscillations 17 

shown in Fig.1. Here we plot a pair of variables (such as position 18 

and velocity) on a closed curve. Time is represented implicitly as 19 

the system travels around the curve. During one cycle of oscillation 20 

of period T secs, the oscillator will start at point A, go around the 21 

curve as shown by the arrows, and return to point A. It turns out 22 

that all oscillators can be described like this. In some cases the 23 

curve approximates a circle quite closely, we shall see this in 24 

section ??. 25 

    
Figure 1. Plots of e.g., position and velocity as time increases. Green 
arrows show the direction of time. 

 26 

1.2 Oscillations in the Natural World 27 

Figure 2 presents a selection of oscillations we may observe in the 28 

natural world; note that most of these do not have a sine waveform. 29 
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 1 

(a) 
(b) 

(c) (d) 

(e) 

(f) 

(g) 

(h) 

Figure 2. (a) Spikes from a single nerve cell, (b) 

sound from a guitar string, (c) Sound from a 

bassoon, (d) light from a Cepheid variable star, (e) 

earthquake recording, (f) electrocardiogram, (g) 

car suspension, (h) height of a walking human, 
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1.3 What you Already Know 1 

Here we shall present some short notes on material you will have 2 

already encountered. While the descriptions are , they are certainly 3 

not complete, (more about this later). 4 

1.3.1 Mass on a Spring 5 

This is the archetypal ‘simple harmonic oscillator’ (SHO) shown 6 

in Fig.3. On the left is an unstretched spring of length 𝐿0 and spring 7 

constant (‘stiffness’) k.  8 

 
Figure 3. Mass on a spring. Left, unstretched spring; centre, mass 
added and spring stretches to equilibrium, right, mass pulled down. 

 9 

Hanging a mass on the end makes the spring stretch down to 𝑥0 10 

and here the force of gravity is balanced by the upward force from 11 

the spring 12 

𝑚𝑔 − 𝑘(𝐿 − 𝑥0) = 0.               (4) 13 

If we then displace the mass down by an additional amount 𝑥1 then 14 

the total force in the positive-x direction is 15 

𝑚𝑔 − 𝑘(𝐿 − 𝑥0) − 𝑘𝑥1 = −𝑘𝑥1.               (5) 16 

Using Newton’s second law, we find the acceleration of the mass 17 

is just 18 

𝑑2𝑥1

𝑑𝑡2
= −

𝑘

𝑚
𝑥1.                     (6) 19 

This describes oscillations of the mass around its equilibrium 20 

position 𝑥0. To solve this, we need a function whose second 21 

derivative is -1 times that function. A cosine will do nicely, so we 22 

try 𝑥(𝑡) = 𝐴 cos 𝜔𝑡; substitution into eq.6 gives expressions for 23 

the angular frequency and period of oscillation 24 
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𝜔 = √
𝑘

𝑚
,           𝑇 = 2𝜋√

𝑚

𝑘
                . (7) 1 

Here 𝜔 = 2𝜋 𝑇⁄ . Eqs7 do not contain the amplitude A of 2 

oscillation, so its period is independent of amplitude which is a 3 

special property for this type of oscillator. Fig.4 shows the mass 4 

located at time t = 2 secs for a system with period t = 2 secs. You 5 

will see that the amplitude is -1. 6 

 
Figure 4. Displacement time-trace for oscillating mass. 

Instead of starting with a Newton’s 2nd and setting up an ordinary 7 

differential equation (ODE) we can analyse systems in terms of 8 

energy. For a mass-spring system we have for the kinetic energy 9 

(KE) stored in the mass and for the potential energy (PE) stored in 10 

the spring 11 

𝐾𝐸 =
1

2
𝑚𝑣2,           𝑃𝐸 = ∫ 𝑘𝑥 𝑑𝑥

𝑥

0

=
1

2
𝑘𝑥2.           (8) 12 

Substituting 𝑥(𝑡) = 𝐴 cos 𝜔𝑡 and 𝑣(𝑡) = −𝜔𝐴 sin 𝜔𝑡 we find that 13 

𝐾𝐸 =  
1

2
𝑚(−𝜔𝐴 sin 𝜔𝑡)2                   14 

=
1

2
𝑘𝐴2 sin2 𝜔𝑡,               (9) 15 

and  16 

𝑃𝐸 =
1

2
𝑘𝐴2 cos2 𝜔𝑡.               (10)  17 

These energies change with time, and it easy to see that they 18 

oscillate twice as fast as the displacement or velocity, e.g. 19 
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sin2 𝜃 = 1

2
(1 − cos 2𝜃), see Fig.5.  Now we can form an 1 

expression for the total energy E 2 

𝐸 = 𝐾𝐸 + 𝑃𝐸 = 1

2
𝑘𝐴2(sin2 𝜔𝑡 + cos2 𝜔𝑡) = 1

2
𝑘𝐴2, (11)  3 

since sin2 𝜃 + cos2 𝜃 = 1. So we see that energy is conserved for 4 

this system. Also, if we denote the average value of a quantity like 5 

this 〈𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦〉 then 〈𝐾𝐸〉 = 〈𝑃𝐸〉 = 1

4
𝑘𝐴2 since 〈sin2 𝜃〉 =6 

〈cos2 𝜃〉 = 1

2
, so on average the total energy is shared equally 7 

between KE and PE, and as shown in Fig.5 energy sloshes between 8 

PE and KE. 9 

So far, all this energy talk is rather descriptive, some may even say 10 

boring. But things become much more interesting if we take the 11 

energy equation and differentiate it, 12 

𝐸 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2,          (12) 13 

𝑑𝐸

𝑑𝑡
= 𝑚

𝑑𝑥

𝑑𝑡
.
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥

𝑑𝑥

𝑑𝑡
.            (13) 14 

Please glance at this footnote1 if you’re uncertain about this. Now 15 

we know that the total energy E is conserved. 16 

 
Figure 5. KE and PE variation with time together with total energy. 

Since energy is conserved, we must have 
𝑑𝐸

𝑑𝑡
= 0, so eq.13 gives 17 

us, assuming that 𝑑𝑥 𝑑𝑡⁄ ≠ 0 18 

 

1 First 
𝑑(𝑣2)

𝑑𝑡
= 2𝑣

𝑑𝑣

𝑑𝑡
 by the chain rule, where 𝑣 =

𝑑𝑥

𝑑𝑡
 of course, and also 

using the chain rule we have 
𝑑(𝑥2)

𝑑𝑡
= 2𝑥

𝑑𝑥

𝑑𝑡
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𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥,                  (14) 1 

which is of course the ODE eq.6 we obtained from Newton’s 2nd. 2 

So the huge takeaway here is that we can derive the ODE either by 3 

considering forces or energy, and there are many cases where using 4 

energy is much easier. Let’s formalize this; it will reduce work in 5 

the future. 6 

1.3.2 An aside concerning Energy. 7 

Apologies for this subsection. The whole section was about what 8 

you already know, but I can’t resist just pushing this knowledge a 9 

bit. Pace lector. We have just seen in eq.12 and eq.13 an important 10 

link between understanding the dynamics of a system (expressed 11 

as an ODE) and its energy formulation. Let’s try to generalize this 12 

approach (to make future work easier). We can write the system 13 

energy like this, as a sum of kinetic and potential energies, 14 

𝐸 =
1

2
𝛼�̇�2 +

1

2
𝛽𝜓2.      (15) 15 

Yikes! We have introduced the strange symbol 𝜓; what does this 16 

represent? Well, the idea is that eq.15  could be applied to many 17 

scenarios. In one, 𝜓 could be just x, the position of a mass on a 18 

spring; in another it could be 𝜃, a rotation of a pendulum. Or it 19 

could be a temperature, or a magnetic field. The important point is 20 

to recognize the structure of eq.15, which may be applicable to 21 

many physical systems. 22 

So we work out the temporal derivative of E and find 23 

�̇� = 𝛼�̇��̈� + 𝛽𝜓𝜓,̇              (16) 24 

which, due to energy conservation, �̇� = 0, gives us 25 

�̈� +
𝛽

𝛼
𝜓 = 0,          (17) 26 

assuming that �̇� ≠ 0 and therefore leads to an oscillation 27 

frequency 28 

𝜔 = √
𝛽

𝛼
.             (18) 29 
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All we need to do is identify 𝛼, 𝛽 for a specific situation and invoke 1 

eq.15 and eq.18. This is the basis of the ‘energy method’. We’ll see 2 

this in action in the following sections. 3 

1.3.3 Mass on 2 Springs 4 

This is a very simple system, a mass is free to move in a line on a 5 

frictionless horizontal surface, see Fig.6. 6 

 
 

Figure 6. Oscillating mass with springs of different stiffness. 

The mass is displaced x to the right, the left spring pulls to the left 7 

with force −𝑘1𝑥 and the right spring pushes to the left with force 8 

−𝑘2𝑥 so we have 9 

𝑚
𝑑2𝑥

𝑑𝑡2
= −(𝑘1 + 𝑘2)𝑥,      𝜔 = √

𝑘1 + 𝑘2

𝑚
.            10 

1.3.4 Floating Bob Wave Energy Convertor 11 

This is a simple system; a bob is floating in water. At equilibrium, 12 

its weight is balanced by an upward force equal to the weight of 13 

the water displaced (Archimedes principle), see Fig.7. If we 14 

displace the bob downwards by distance y then the submerged 15 

volume increases by Ay where A is the cross-sectional area of the 16 

bob. The mass of the additional displaced water is just 𝜌𝐴𝑦 where 17 

𝜌 is the water density and its weight is just 𝜌𝑔𝐴𝑦 where g is 18 

gravitational acceleration, so we now have a net upwards force. We 19 

therefore have 20 

𝑚
𝑑2𝑦

𝑑𝑡2
= −(𝜌𝑔𝐴)𝑦,              𝜔 = √

𝜌𝑔𝐴

𝑚
.           (19) 21 

This can be simplified by using an expression for m but here’s not 22 

the place. 23 
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Figure 8. Floating Bob Wave Energy Convertor (WEC). 

 1 

1.3.5 The Pendulum 2 

This is shown in Fig.8. Here we apply Newton’s 2nd but in rotation. 3 

If the body has moment of inertia I and we apply a torque 𝜏 about 4 

a point, then the body experiences an angular acceleration given by 5 

𝐼
𝑑2𝜃

𝑑𝑡2
= 𝜏.            (20) 6 

In this case downward force on the bob due to gravity produces a 7 

torque around the pivot point 8 

𝑚𝑔𝐿 sin 𝜃,              (21) 9 

since torque is the product of the force and the lateral distance to 10 

the centre of rotation. The moment of inertia of the pendulum about 11 

its pivot point is just 𝑚𝐿2 so the equation of motion for the bob’s 12 

rotation becomes 13 

𝑚𝐿2
𝑑2𝜃

𝑑𝑡2
= −𝑚𝑔𝐿 sin 𝜃,              (22) 14 

which becomes 15 

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
sin 𝜃.              (23) 16 

Now for small 𝜃 we have sin 𝜃 ≈ 𝜃 so we finally arrive at 17 

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
𝜃,        𝜔 = √

𝑔

𝐿
.             (24) 18 
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Alternatively, we could use the energy approach. The KE is just 1 
1

2
𝐼�̇�2 and the PE is 𝑚𝑔𝐿(1 − cos 𝜃) ≈ 1

2
𝑚𝑔𝐿𝜃2 since cos 𝜃 =2 

1 − 1

2
𝜃2, so we use the energy formula with 3 

𝛼 = 𝑚𝐿2,     𝛽 = 𝑚𝑔𝐿,       (25) 4 

which leads  to eq.24. 5 

 
Figure 8. Pendulum Bob. 

 6 

1.3.6 Water in a U-tube 7 

Have a look at Fig.9 which shows water in a U-tube displaced 8 

upwards by distance y from the equilibrium position (green dashed 9 

line). The tube has cross-sectional area A and the water has density 10 

𝜌 and the total column length L. Let’s put forward two arguments, 11 

the first using Newton’s 2nd and the second using the energy 12 

approach. 13 

 
Figure 9. Water in a U-Tube. 

 14 

There is a force due to the additional length of water on the right 15 

which is just −(𝐴𝜌𝑔)2𝑦 , use the red dashed line to check this, and 16 

this acts to accelerate a mass. But which mass, you may think since 17 

the force is exerted on the water below the additional length, then 18 
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we should use that mass. But this is incorrect. Ask yourself what 1 

mass is actually accelerating due to this force? Clearly the mass of 2 

the whole water column. We therefore have 3 

(𝜌𝐴𝐿)
𝑑2𝑦

𝑑𝑡2
= −(2𝐴𝜌𝑔)𝑦,           𝜔 = √

2𝑔

𝐿
.               (26) 4 

Now let’s apply the energy approach. The increase in PE of the 5 

displaced water from its equilibrium position (green dashed line) 6 

comes from taking a volume of water Ay from the left arm, and 7 

raising it a height Ay and putting it on top of the water in the right 8 

tube. We  therefore have 9 

𝑃𝐸 = (𝜌𝑔𝐴𝑦)𝑦      = 𝜌𝑔𝐴𝑦2. 10 

The kinetic energy of the moving mass of water is just 11 

𝐾𝐸 =
1

2
𝑚 (

𝑑𝑦

𝑑𝑡
)

2

=
1

2
𝜌𝐴𝐿 (

𝑑𝑦

𝑑𝑡
)

2

,              (27) 12 

so we have  13 

𝛼 =  𝜌𝐴𝐿,          𝛽 = 2𝜌𝑔𝐴,         (28) 14 

which again leads to eq.26. 15 

1.3.7 Diatomic Molecule. 16 

Let’s work this situation using the energy method. The situation is 17 

shown in Fig.10 The diatomic molecule is modelled as two 18 

different masses connected by a single spring. You may think this 19 

is a rather unusual system, since it is not ‘tied’ to any fixed point 20 

in space. So it could be rotating or moving through space as well 21 

as vibrating, or a combination of any or all of these degrees of 22 

motion. So we assume it is not moving, the centre of mass is fixed 23 

(i.e., assumed ‘tied’) and it is not rotating. So we consider only 24 

vibrations, around its centre of mass. This is equivalent to assuming 25 

there is no ‘external’ force. 26 
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Figure 10. Diatomic Molecule vibration. 

Since the centre of mass does not move, we must have 𝑚1𝑥1 +1 

𝑚2𝑥2 = 0. Now let’s get our PE and KE and use this constraint: 2 

𝑃𝐸 =
1

2
𝑘(𝑥1 + 𝑥2)2 =

1

2
𝑘𝑥1

2 (1 +
𝑚1

𝑚2
)

2

 ,               (29) 3 

𝐾𝐸 =
1

2
𝑚1�̇�1

2 +  
1

2
𝑚2�̇�2

2 =
1

2
𝑚1 (1 +

𝑚1

𝑚2
) ,            (30) 4 

so we have 5 

𝛼 = 𝑚1 (1 +
𝑚1

𝑚2
) ,            𝛽 = 𝑘 (1 +

𝑚1

𝑚2
)

2

,       (31) 6 

so we find the oscillation frequency is 7 

𝜔 = √
𝛽

𝛼
= √𝑘 (

𝑚1 + 𝑚2

𝑚1𝑚2
) = √

𝑘

𝜇
 ,           (32) 8 

where 𝜇 = 𝑚1 𝑚2 (𝑚1 + 𝑚2)⁄  is called the reduced mass of the 9 

molecule, just replacing two parameters with one. Nature likes 10 

simplicity. 11 

 
Example 1.1 Let’s consider a molecule of Hydrogen Chloride. 
The masses are 𝑚𝐻 = 1 × 1.67 × 10−27 kg and 𝑚𝐶𝑙 =
35 × 1.67 × 10−27 kg giving a reduced mass of 𝜇 = 1.62 ×
10−27 kg which is nearly the same as the hydrogen mass. So 
we it looks as though the chlorine atom is behaving like a brick 
wall. The spring constant is 516 N/m so we calculate 
 

𝜔 = 5.65 × 1014𝑠,      𝑓 = 9.00 × 1013𝐻𝑧 
 

which is in the infra-red region of the spectrum. So if we 
shine electromagnetic waves into a tank of HCl then we shall 
see an absorption band in the infra-red region at this 
frequency. 
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 1 

1.4 Some Underlying Mathematics 2 

We mentioned earlier that while solutions presented in section 1.3 3 

were correct, they were not necessarily complete. Here we address 4 

this limitation. 5 

1.4.1 Various ways to express harmonic motion 6 

We noted that to solve eq.6 either a sine or a cosine function would 7 

do, and we selected a cosine (in order to make the equations less 8 

cluttered). We could have selected a sine, but we should have 9 

selected both! The idea is that if a cosine is a solution and a sine is 10 

a solution, then added together they would also be a solution like 11 

this 12 

𝑦(𝑡) = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡           (33) 13 

where the coefficients A and B allow us to take different mixes of 14 

the two functions. Go ahead and check this is a solution by 15 

substitution into eq.6. Now we can use trigonometric identities to 16 

write eq.33 in the alternative form 17 

𝑦(𝑡) = 𝐷 cos(𝜔𝑡 + 𝜑)             (34) 18 

where the variable 𝜑 is the ‘phase’ of the oscillation. Of course 19 

another alternative solution is  20 

𝑦(𝑡) = 𝐷 sin(𝜔𝑡 + 𝜑′)      (35) 21 

where we need a different phase. Let’s try to get our heads around 22 

the meaning of phase and plot out eq.34 for various values of phase 23 

𝜑. Note that 𝜑 is just a specified angle (in radians), since at t = 0 24 

the above expression will become 𝑦(0) = 𝐷 cos(𝛿). If you want to 25 

visualize a phase in degrees (°), just calculate 𝜑 × (180 2𝜋)⁄ , but 26 

never use degrees in an expression! 27 

We plot eq.34 for a number of different phases in Fig.11, each plot 28 

has a red reference function with phase set to zero. In Fig.11(a) we 29 

have 𝜑 = 𝜋 3⁄  (30°) and we see the plot is shifted to the left. This 30 

is easy to understand, 𝜔𝑡 must now be smaller for the argument of 31 

the cos to have the same value, hence t is smaller, a shift to the left. 32 

In Fig.11(b) we have 𝜑 = − 𝜋 3⁄  (-30°) and the function is shifted 33 

to the right. Finally in Fig.11(c) we have 𝜑 = 𝜋 2⁄  (90°) which 34 
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turns out to be an important value for phase. Here we have a left 1 

shift, and we say the green curve lags the red curve by 𝜋 2⁄  . 2 

 
Figure 11. Cosine wave with three phases: (a) 30°, (b) -30°, (c) 90°. 

So you should have a fairly good understanding of what the phase 3 

angle is, but we have not really addressed the question of why we 4 

have introduced it at all! Well note that all the ‘various ways’ of 5 

expressing SHM mentioned above have two arbitrary coefficients. 6 

Why? Well, it’s because we are dealing with a 2nd-order ODE, and 7 

mathematically, there must be an arbitrary coefficient for each 8 

order. We shall see how these coefficients are specified by the 9 

initial conditions (the state of the system at t = 0, in section 1.4.4. 10 

 1.4.2 Linear and Non-linear Systems, Superposition 11 

We have mentioned that linear systems are straightforward to 12 

solve, but non-linear systems are not; also that most systems in the 13 

natural world are non-linear. So what’s the difference? Consider 14 

two springs, for a linear spring, the restoring force is proportional 15 

to displacement 16 

𝐹(𝑦) = −𝑘𝑦.              (36) 17 

Now this is not true for a non-linear spring, e.g. the force 18 

expression may have an additional cubic term 19 

𝐹(𝑦) = −𝑘𝑦 − 𝛼𝑦3.              (37) 20 

We know that eq.36 leads to eq.6 which has a solution of the form 21 

𝑦(𝑡) = 𝐴 cos 𝜔𝑡, but what happens when we set up the ODE for 22 

the non-linear force and try a solution of this form. We have 23 
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�̈�(𝑡) = −
𝑘

𝑚
𝑦(𝑡) −

𝛼

𝑚
𝑦3(𝑡),           (38) 1 

−𝜔2𝐴 cos 𝜔𝑡 = −
𝑘

𝑚
𝐴 cos 𝜔𝑡 −

𝛼

𝑚
𝐴3 cos3 𝜔𝑡,        (39) 2 

and following some tedious algebra we have 3 

 

−𝜔2 cos 𝜔𝑡 = −
𝑘

𝑚
cos 𝜔𝑡 −

𝛼

4𝑚
𝐴3 cos 𝜔𝑡 −

𝛼

4𝑚
𝐴3 cos 3𝜔𝑡.             (40) 

 

Now we’re in  trouble, note the appearance of the term in cos 3𝜔𝑡 4 

on the right. So we are unable to ‘cancel out’ the cos terms, i.e. find 5 

a solution which works for all values of t. So we conclude that this 6 

non-linear system does not undergo SHM. We’ll return to this in 7 

section 1.6.4. 8 

So to linear systems. In section 1.4.1 we mentioned that both a cos 9 

and a sin function solved the ODE and hinted that a sum should 10 

satisfy the ODE. Let’s make this more concrete. Let’s take eq.6 and 11 

say that we have found two solutions 𝑦1(𝑡) and 𝑦2(𝑡) so we have 12 

𝑚
𝑑2𝑦1

𝑑𝑡2
= −𝑘𝑦1, 13 

𝑚
𝑑2𝑦2

𝑑𝑡2
= −𝑘𝑦2 14 

Adding these together we find, using the fact that a sum of 15 

derivatives is the derivative of the sum, 16 

𝑚
𝑑2(𝑦1 + 𝑦2)

𝑑𝑡2
= −𝑘(𝑦1 + 𝑦2),     (41) 17 

which is an ODE for the sum 𝑦1 + 𝑦2 which clearly has a solution 18 

of the form we have been using. This works because the right-hand 19 

sides of the above equation are linear in y corresponding to a linear 20 

spring. 21 

1.4.3 An Alternative view of the ODEs 22 

This material is perhaps a little advanced and could initially be 23 

skipped. We have been using an ODE of the form 𝑑2𝑦 𝑑𝑡2⁄ =24 

𝑓(𝑦) to describe our oscillators. This is a second-order ODE since 25 

the second derivative of y appears in the expression. It’s interesting 26 
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to look at an alternative way of expressing this 2nd-order ODE and 1 

indeed we can generalize this to any nth-order linear ODE. 2 

We start with the ‘fundamental theorem of algebra’ which states 3 

that any nth-order polynomial 4 

𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛−1𝑧𝑛−1 + 𝑎𝑛𝑧𝑛    (42) 5 

can be factored into 6 

𝑎𝑛(𝑧 − 𝑟1)(𝑧 − 𝑟2) … (𝑧 − 𝑟𝑛).         (43) 7 

So if we take the nth-order ODE 8 

𝑎𝑛

𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯ + 𝑎1

𝑑𝑦

𝑑𝑡
+ 𝑎0 = 0,     (44) 9 

then since differentiation by t commutes with multiplication, we 10 

can use the equality of eq.42 and eq.43 to rewrite this ODE as 11 

𝑎𝑛 (
𝑑

𝑑𝑡
− 𝑟1) (

𝑑

𝑑𝑡
− 𝑟2) … (

𝑑

𝑑𝑡
− 𝑟𝑛) 𝑥 = 0.         (45) 12 

Now the last term invites an immediate solution 13 

(
𝑑

𝑑𝑡
− 𝑟𝑛) 𝑥 = 0,       ⇒  

𝑑𝑥

𝑑𝑡
= 𝑟𝑛𝑥,      (46) 14 

and since any of the terms in eq.45 can be ‘rotated’ to the right, we 15 

see that the nth-order ODE can be re-written as n 1st-order ODEs. 16 

This can be quite useful, and we shall soon see how. The takeaway 17 

from this, is that the dynamics contained in our 2nd-order ODE is 18 

equally contained in the dynamics of two 1st-order ODEs. 19 

1.4.4 Initial Conditions and Superposition 20 

We have seen how a function of the form  𝑦(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) 21 

satisfies the ODEs for a range of physical systems, and we know 22 

that the value of the angular frequency 𝜔 is specified by the physics 23 

of the system; for a mass-spring system it is specified by m and k. 24 

But we have been silent about the amplitude A and the phase 𝜑, 25 

how are these fixed for an actual system we may be investigating 26 

in the lab? Well, they are given by the initial conditions (ICs) of 27 

the system; how it is configured at t=0. We need 2 initial conditions 28 

since we have two unknowns A and 𝜑. How can we impart these 29 

ICs, alternatively what must we do to get our oscillator going? Well 30 

the first thing is to give it an initial displacement, which will fix the 31 
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value of A as this displacement. We do this, in the case of the mass-1 

spring system, by dragging the mass down, then releasing it, so at 2 

the time of release t=0 it takes on the displacement we are giving 3 

it. But at the time of release, we have specified another variable, 4 

the velocity of the mass. This is usually zero. Let’s see how this 5 

works to fix A and 𝜑. 6 

Assume that at time t=0 we release the mass with displacement 𝑦0 7 

and zero velocity. We have 8 

𝑦(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑),   𝑣𝑦(𝑡) = −𝜔𝐴 sin(𝜔𝑡 + 𝜑),   (47) 9 

and at t = 0 we have 10 

𝑦(0) = 𝐴 cos(𝜑) = 𝑦0 ,   𝑣𝑦(0) = −𝜔𝐴 sin(𝜑) = 0.    (48)   11 

The condition of zero velocity at t = 0 means that 𝜑 = 0, and using 12 

this in the condition for y(0) gives us 𝐴 = 𝑦0, so our final solution 13 

with ICs incorporated becomes 14 

𝑦(𝑡) = 𝑦0  cos(𝜔𝑡).              (49)   15 

1.4.5 Oscillations near bottom of Potential Well 16 

We saw above that when the potential energy has a quadratic form, 17 

then SHO results. We have for 𝑃𝐸 = 𝑈(𝑥) 18 

𝑈(𝑥) =
1

2
𝑘𝑥2,   𝐹 =  −

𝑑𝑈

𝑑𝑥
= −𝑘𝑥,      (50) 19 

which is the required restoring force proportional to x. Now if we 20 

have a potential which is not quadratic but has a minimum, we can 21 

approximate the potential near the minimum with a quadratic, 22 

glance at Fig.12. The blue curve is the non-quadratic with a 23 

minimum at 𝑥0 and the red curve is a quadratic chosen to match the 24 

potential at the minimum point. 25 
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Figure12. Non-quadratic potential (blue) with quadratic 
approximation (red dash) located at the minimum of blue. 

Let’s make a Taylor expansion of our non-quadratic potential 1 

𝑈(𝑥) about 𝑥0 2 

 3 

𝑈(𝑥) = 𝑈(𝑥0) +
𝑑𝑈

𝑑𝑥
|

𝑥=𝑥0

(𝑥 − 𝑥0) +
1

2

𝑑2𝑈

𝑑𝑥2
|

𝑥=𝑥0

(𝑥 − 𝑥0)2 + ⋯.    (51) 

 

From Fig.12 we have 𝑈(𝑥0) = 0 and 𝑑𝑈 𝑑𝑥⁄ = 0 since we are at 4 

the minimum which leaves 5 

𝑈(𝑥) =
1

2

𝑑2𝑈

𝑑𝑥2
|

𝑥=𝑥0

(𝑥 − 𝑥0)2.         (52) 6 

This is our locally quadratic potential, with effective spring 7 

constant 8 

𝑘 =
𝑑2𝑈

𝑑𝑥2
|

𝑥=𝑥0

  ,          (53) 9 

so in general we have 10 

𝜔 = √
1

𝑚

𝑑2𝑈

𝑑𝑥2
|

𝑥=𝑥0

    or    𝜔 = √−
1

𝑚

𝑑𝐹

𝑑𝑥
|

𝑥=𝑥0

   .   (𝑥𝑥) 11 
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 1 

 
Example 2. Let’s take an example of the potential 

𝑈(𝑥) = 𝑥4 − 𝛽𝑥2 + 𝛽2 4⁄  

which is shown in Fig.?? This has a minimum at 𝑥0 = √𝛽 2⁄ . Simple 

calculus shows that �̈�(𝑥 − 𝑥0) = 4𝛽, so our approximating potential 
is just 

𝑈𝑎𝑝𝑝𝑟𝑜𝑥(𝑥) = �̈�(𝑥 − 𝑥0)(𝑥 − 𝑥0)2 = 4𝛽(𝑥 − 𝑥0)2 

 

 2 

1.4.6 Extending the ODEs: Damping 3 

Most oscillators in the real world do not continue indefinitely with 4 

a constant amplitude as the examples presented above suggest. 5 

They will often encounter fluid resistance which removes energy 6 

from the system (dissipated ultimately as heat) and causes a steady 7 

decay in the amplitude of oscillation. Typical traces for such a 8 

damped oscillator are shown in Fig.13 9 

 
Figure 13. Time-trace (blue) and velocity trace (red) for a damped 
harmonic oscillator. 

Clearly the amplitudes of both displacement and velocity reduce 10 

with time. This will be discussed in detail in section 1.8; here we 11 

only wish to extend the underlying ODEs to take damping into 12 

account. 13 

We must consider the source of damping; this is an additional 14 

frictional force due to the object’s motion through the surrounding 15 

fluid. How this force actually works is shown in Fig.14 where we 16 

see a moving object at two times; at each time the velocity of the 17 

object is shown by the green arrow; it has reversed direction. 18 
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Figure 14. Forces on an oscillating mass with damping. Green arrows 
show the velocity at two instants, the red arrow F shows the friction 
force in the opposite direction to the velocity. 

In this figure we have supplemented the existing forces mg due to 1 

gravity and -kx due to the spring with a frictional force F. The 2 

direction of this force has to be opposite to the velocity v of the 3 

object, but how does it depend on the velocity? This needs to be 4 

established by experiment, and there appear a couple of 5 

alternatives. For air, and at small speeds in water, friction is 6 

proportional to velocity, so we write 7 

𝐹 = −𝑏𝑣,              (55) 8 

where the coefficient b depends on the size of the object and 9 

properties of the fluid (e.g. viscosity). For larger speeds in water 10 

friction is proportional to velocity squared, so we have 11 

𝐹 = −𝑏𝑣2.            (56) 12 

Which do we choose? We nearly always choose eq.55 since eq.56 13 

is non-linear which makes a solution beyond our grasp (note the 14 

squared ‘thing’ in eq.56 is not a constant, but a system variable) 15 

and this would result in a non-linear differential equation. 16 

So we supplement eq.6 with eq.55 and write down the ODE for 17 

our damped system, 18 

𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥 −

𝑏

𝑚

𝑑𝑥

𝑑𝑡
 ,        (57) 19 

or in the alternative simpler form 20 

𝑑2𝑥

𝑑𝑡2
= −𝜔0

2𝑥 − 2𝛽
𝑑𝑥

𝑑𝑡
 ,           (58) 21 
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where 𝜔0
2 = 𝑘 𝑚⁄  and 𝛽 = 𝑏 2𝑚⁄ . 1 

1.5 Energy 2 

1.5.1 Basic Ideas 3 

When a system oscillates it will cross back and forwards around its 4 

equilibrium position. If there is no damping, it will do this 5 

endlessly, but with some damping it will converge to and come to 6 

rest at its equilibrium position. Take a pendulum with damping; 7 

when displaced it will cross back and forwards around its 8 

equilibrium position (the vertical) and will eventually come to rest 9 

in this vertical position. So that gives us a hint of what the 10 

‘equilibrium position’ really means. 11 

Now we know that a system can be described by the sum of 12 

potential and kinetic energies, which is constant if energy is 13 

conserved. At the point of minimum potential energy, the system 14 

will have its greatest kinetic energy. Let’s consider a ball on a track 15 

which we can think of as its PE curve2 see Fig.15.  16 

 

 
 

 
2 Sure this is an approximation, but it’s not a bad one, and many 

textbooks use this example. 
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Figure 15. Ball on a track which models its potential energy. Top shows 
ball at rest, centre a displacement giving it PE, bottom when released 
the PE is totally converted to PE. 

 1 

So if we start off with the ball at rest, located at the PE minimum, 2 

and give it a small displacement up the curve, we have done work, 3 

and given it some PE. If you let it go it will then move down the 4 

potential hill towards the PE minimum (where it has maximum 5 

speed and therefore KE) and would continue up the other side of 6 

the PE curve. This would repeat and the ball would oscillate. If you 7 

added damping, then the ball would lose velocity over time, and it 8 

would eventually come to rest at the minimum of the PE and ‘be at 9 

equilibrium’. So we see the equilibrium is located at the minimum 10 

of the PE curve. See Fig.16. 11 

 
Figure 16. Potential energy curve and time-trace of the mass 
displacement as it repeatedly crosses the equilibrium (zero) position. 

 12 

Simple systems, like those discussed in section 1.3 will have a 13 

single minimum and quite often the form of the PE curve is 14 

quadratic i.e., 𝑉(𝑥) = 1

2
𝑘𝑥2 where k is a constant. Other curves 15 

may have a different functional form, we have seen how to deal 16 
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with this in section 1.4.5. Other systems may have multiple minima 1 

in their PE curves, and we expect that they could display different 2 

oscillation regimes, one for each minima. But that’s getting too 3 

advanced too quickly. 4 

1.5.2 Energy Equation 5 

Let’s think of a particle of mass m moving in 1D and has a position 6 

𝑥(𝑡) which is varying in time, and it is subject to a force 𝑥(𝑡) which 7 

varies with position. The ODE describing its motion is just 𝑚�̈� =8 

𝐹(𝑥). The kinetic energy of the particle is 9 

𝑇 =
1

2
𝑚�̇�2,                      (59) 10 

and its potential energy is 11 

𝑉(𝑥) = − ∫ 𝐹(𝑥′)𝑑𝑥′,                 (60)
𝑥

𝑎

 12 

where a is an arbitrary constant; we often choose 𝑎 = 0. Now 13 

let’s calculate the rate of change of KE, 14 

𝑑

𝑑𝑡
(

1

2
𝑚�̇�2) = �̇�𝑚�̈� = �̇�𝐹(𝑥).             (61) 15 

But we know that 𝐹(𝑥) = − 𝑑𝑉 𝑑𝑥⁄  so the above equation 16 

becomes 17 

𝑑

𝑑𝑡
(

1

2
𝑚�̇�2) = −

𝑑𝑥

𝑑𝑡

𝑑𝑉

𝑑𝑥
= −

𝑑𝑉

𝑑𝑡
.             (62) 18 

So the rate of change of KE is equal and opposite to the rate of 19 

change of PE, so their sum must be constant, which is often written 20 

𝑇 + 𝑉 = const.                (63) 21 

Such a system is called conservative. Now let’s see what happens 22 

if the force F depends on something other than position, such as 23 

velocity. Think of a mass on a spring with damping; the ODE for 24 

this system is 25 

𝑚�̈� = −𝑘𝑥 − 𝑏�̇�.           (64) 26 

The sum of the KE and PE is still 1

2
𝑚�̇�2 + 1

2
𝑘𝑥2 and its rate of 27 

change is 28 
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𝑑

𝑑𝑡
(

1

2
𝑚�̇�2 +

1

2
𝑘𝑥2 ) = 𝑚�̇��̈� + 𝑘𝑥�̇� 1 

= �̇�(𝑚�̈� + 𝑘𝑥) = −𝑏�̇�2 < 0,       (65) 2 

so this is negative, and energy is being lost or dissipated by 3 

damping. So here 𝑇 + 𝑉 ≠ const and we do not have a 4 

conservative system. 5 

1.5.3 The Energy Integral and calculation of Period 6 

Here we shall obtain an important and useful result which will 7 

allow us to find the period of any system if we know its energy. 8 

Starting with 9 

1

2
𝑚�̇�2 + 𝑉(𝑥) = 𝐸,       (66) 10 

we find that 11 

𝑑𝑥

𝑑𝑡
= ±√

2(𝐸 − 𝑉)

𝑚
 ,                  (67) 12 

hence 13 

𝑑𝑡

𝑑𝑥
= ±√

𝑚

2(𝐸 − 𝑉)
, 14 

which we integrate 15 

𝑡 = ∫
𝑑𝑡

𝑑𝑥
𝑑𝑥 = ± ∫ √

𝑚

2(𝐸 − 𝑉)
𝑑𝑥.                (68) 16 

We can represent this graphically for a quadratic potential. Fig.17 17 

shows such a potential together with a particular choice of  E. The 18 

limits of x for the oscillation are shown. Also shown is the value of 19 

the integrand √𝑚 2(𝐸 − 𝑉)⁄  , and the integral is indicated as the 20 

shaded area. 21 
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Figure 17. Quadratic potential (top) and associated integral shown as 
the shaded area (bottom). 

 1 

The integral is calculated from when the ball starts on the left (at 2 

𝑥 ≈ −0.64) and ends up on the right (at 𝑥 ≈ 0.64) and has a value 3 

of (at 𝑡 ≈ 0.98s), this is calculated numerically. This motion of the 4 

ball is just one half the period of oscillation, so the period is 𝑇 =5 

2 × 0.98 = 1.96s. This system had the coefficients m = 1 and k = 6 

9.87 which would result in a period 𝑇 = 2𝜋√1 9.87⁄ = 2s so we 7 

see agreement is good. 8 

So we see how to calculate period T from the energy curve 9 

𝑇 = 2 ∫ √
𝑚

2(𝐸 − 𝑉)
𝑑𝑥,                (69) 10 

where we integrate between the x-extrema of the position. 11 

1.5.4 Why the Quadratic Potential is Special 12 

Let’s use the energy integral to find the period of an oscillator with 13 

𝑉(𝑥) = 1

2
𝑘𝑥2. Often nasty integrals like the energy integral can be 14 

conquered by substitution, which we shall do here, using 𝐸 =15 
1

2
𝑘𝑥0

2, then eq.68 becomes 16 

𝑡 = √
𝑚

𝑘
∫

1

√(𝑥0
2 − 𝑥2)

𝑑𝑥       (70) 17 
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No we can write 𝑥 = 𝑥0 sin 𝜃 and using 𝑑𝑥 = 𝑥0 cos 𝜃 𝑑𝜃 we 1 

have 2 

𝑡 = √
𝑚

𝑘
∫

1

√cos2 𝜃
𝑥0 cos 𝜃 𝑑𝜃        (71) 3 

= √
𝑚

𝑘
𝜃 + 𝑡0,                                             4 

where 𝑡0 is a constant of integration. Substituting for 𝜃 we have 5 

𝑡 = √
𝑚

𝑘
sin−1(𝑥 𝑥0⁄ ) + 𝑡0,    (72) 6 

and we end up with the solution 7 

𝑥 = 𝑥0 sin(𝜔(𝑡 −  𝑡0)) 8 

= √
2𝐸

𝑘
sin(𝜔(𝑡 −  𝑡0)),        (73) 9 

where 𝜔 = √𝑘 𝑚⁄  is our familiar oscillation frequency. The main 10 

point to note is that the total energy E does not contribute to the 11 

frequency term, only to the oscillation amplitude. That’s the special 12 

thing about a quadratic potential; the frequency of oscillation is 13 

independent of the amplitude. 14 

Now what about the area under the integrand graph we mentioned 15 

above. The period is proportional to this area, so it must be the same 16 

whatever the value of E. Figure.18 shows the area for E=2 and E=3. 17 

For the larger E the area is wider but no so high, on average. The 18 

area for the smaller E is higher but less narrow. So they are equal. 19 
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Figure 18. Energy integrals for potential energies 2 (upper) and 3 
(lower). The higher energy integral is wider but less tall; both areas 
turn out to be equal. 

 1 

1.5.5 How to deal with a General Potential Function 2 

We have already seen how to do this; eq.69 shows us how to, in 3 

theory,  calculate the period of oscillation if we know how the 4 

potential 𝑉(𝑥) varies with x. So how do we do this in practice? 5 

Well, we resort to a numerical integration of the integral. This will 6 

always work, but we need to pay attention to the limits of 7 

integration where 𝐸 − 𝑉 = 0, so we need to take numerical care. 8 

One situation which recurs across a number of areas of physics is 9 

where the potential has the form shown in Fig.19. 10 

 
Figure 19. A typical potential plot. The red line is quadratic, and the 
blue is power-law. A mass will spend most of its time to the right of 
equilibrium (dashed red line), so its period is dominated by the 
quadratic part of the potential curve. 

 11 
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The potential has a minimum around x = -0.7, (shown by the red 1 

dashed line); to the right of this, the potential is quadratic, but to 2 

the left it rises as a power law ~𝑥𝑛. Think of a ball moving on such 3 

a potential curve, how does it behave? When the ball is to the right 4 

of the red line it experiences a quadratic potential, so all of our 5 

arguments above apply. It will spend a significant time here. But to 6 

the left of the dotted line, the potential rises rapidly (so the ball 7 

experiences a very large restoring force), so it will spend a small 8 

time in this region. We conclude that its period will be dominated 9 

by the quadratic region, and this will be approximately one half of 10 

the period calculated from eq.69. 11 

1.5.6 Oscillations around a General Potential Minimum 12 

Let’s return to the idea of equilibrium and we assume we are 13 

talking about a stable equilibrium. This is a point 𝑥0 where the 14 

force is zero, 𝐹(𝑥0) = 0. Since the force is given by the negative 15 

of the derivative of the potential, we have 𝑑𝑉(𝑥0) 𝑑𝑥⁄ = 0. 16 

Consider the situation shown in Figure 20 where we have a local 17 

potential minimum at 𝑥0, and consider a small disturbance 𝜉 from 18 

this point.  19 

 
Figure 20. Displacement 𝜉 from a local potential minimum. 

 20 

We can expand the potential as our usual Taylor series 21 

𝑉(𝑥0 + 𝜉) = 𝑉(𝑥0) + 𝑉′(𝑥0)𝜉 + 𝑂(𝜉2).            (74) 22 

We need the derivative of V to construct the equation of motion 23 

which is 24 

𝑉′(𝑥0 + 𝜉) = 𝑉′(𝑥0) + 𝑉′′(𝑥0)𝜉 + 𝑂(𝜉2).            (75) 25 

Since 𝑉′(𝑥0) = 0 we have 26 
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𝑚�̈� = −𝑉′′(𝑥0)𝜉,            (76) 1 

which has a harmonic solution with frequency 2 

𝜔 = √
𝑉′′(𝑥0)

𝑚
 .                   (77) 3 

This is a very useful expression to calculate the frequency of small-4 

amplitude oscillations around a potential minimum. Of course it 5 

assumes that 𝑉′′(𝑥0) ≠ 0; if that is not the case, then further terms 6 

in the series will need to be considered. 7 

 
Example. Take our mass on a spring with 𝑉(𝑥) = 1

2
𝑘𝑥2 and we wish 

to find the oscillation frequency around x =0. We see that 𝑉′(0) = 0 

and that 𝑉′′(0) = 𝑘 so our frequency is 𝜔 = √𝑘 𝑚⁄  as we very well 
know. 

 

 8 

 9 

 10 

  11 



Fysika 1A      32 
 

1.6 The Phase Plane 1 

1.6.1 The Concept of the Phase Plane 2 

We know that oscillating systems are modelled as 2nd-order ODEs 3 

which means that there are two variables, position and velocity, 4 

that change with time. For each system we can therefore plot two 5 

curves, one of position against time, and the other velocity against 6 

time. At each moment in time, the oscillator can be described as 7 

vector (position, velocity). So we could plot this vector (point) on 8 

axes comprising position and velocity; look at Fig21. At time 𝑡1 9 

 
Figure 21. Plot of velocity vs. displacement for an oscillator. Values at 
three times are shown. 

the mass has a small positive displacement and a large positive 10 

velocity, so its displacement will increase. Later at 𝑡2 the 11 

displacement has indeed increased, but its velocity has decreased. 12 

At time 𝑡3 the velocity is negative, the mass has turned around and 13 

is coming back, and its displacement has reduced. Note that we 14 

have suggestively added a dashed circle and this suggests that the 15 

oscillator is moving around this circle. In fact, if we plotted points 16 

at very small time intervals then we would end up with a nice curve, 17 

and this would be a circle. 18 

Such an x-v plane is known as the phase plane and is of great use 19 

in describing and understanding oscillations. But the real beauty of 20 

the phase plane is that it can easily be applied to non-linear 21 

oscillators as we shall see in section 1.6.4. 22 

1.6.2 The Phase Plane for our undamped oscillator 23 

We already know how to construct the phase plane for our 24 

oscillator, since we know its position as a function of time. So each 25 

point on the phase plane can be plotted from 26 
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𝑥(𝑡) = 𝐴 cos 𝜔𝑡                   𝑣(𝑡) = −𝜔𝐴 sin 𝜔𝑡.       (78) 1 

In other words, these points lie on an ellipse as shown in Fig.22. 2 

They do not lie on a circle, since there is an additional factor 𝜔 in 3 

the expression for v. 4 

 
Figure 22. Plot of eq.78 for a SHO. The trajectory is an ellipse. 

Now it would be nice if we could arrange things to get the trajectory 5 

to be a circle. Why? Well, the changing radius of the ellipse as we 6 

travel around does not really give us any real-time information 7 

about how the oscillations may develop in time; it is simply a 8 

consequence of scaling by 𝜔. Perhaps in more complicated 9 

situations the radius might be able to give us some interesting 10 

information, after all, simple harmonic motion is the simplest 11 

possible. 12 

It's easy to arrange this, all we need to do is to scale the velocity by 13 

𝜔 so that we have 𝑣 = 𝜔𝑣′ where 𝑣′ is our new rescaled velocity. 14 

Then we can replace eq.78 with 15 

𝑥(𝑡) = 𝐴 cos 𝜔𝑡       𝑣′(𝑡) 
𝑣(𝑡)

𝜔
= −𝐴 sin 𝜔𝑡,       (79) 16 

and so we end up with the trajectory shown in Fig.23, a nice 17 

circle. 18 
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Figure 23. Trajectory when the velocity is scaled according to eq.79. 

As time increases so does 𝜔𝑡 and so the red point rotates clockwise. 1 

1.6.3 From a 2nd-order ODE to the Phase Plane 2 

We hope you enjoyed the discussion of the phase plane above, but 3 

this is not how phase planes are used. In the above, we started with 4 

the solution 𝑥(𝑡) = 𝐴 cos 𝜔𝑡, but in most cases we do not know 5 

the solution; instead we have the ODEs for the oscillator problem. 6 

Here we shall see how we can construct a phase plane starting from 7 

the ODEs and that might help us find an analytical solution. 8 

The simple harmonic oscillator is described by a 2nd-order 9 

differential equation in x, but to make a phase plane we need 10 

information about how both x and v change with time, so we need 11 

a 1st-order equation for x, and a second 1st-order equation for v. 12 

Here’s how we get them. Let’s start by unpicking our 2nd-order 13 

equation. 14 

𝑑2𝑥

𝑑𝑡2
= −𝜔0

2𝑥,    𝑖. 𝑒. ,    
𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
) = −𝜔0

2𝑥,     15 

i.e., 16 

𝑑𝑣

𝑑𝑡
= −𝜔0

2𝑥,    where       
𝑑𝑥

𝑑𝑡
=  𝑣.        (80) 17 

So we now have two 1st-order ODEs which we could use to 18 

construct the phase plane. But we won’t since they are not 19 

symmetrical; the equation for v is scaled by 𝜔0
2 and we would like 20 

to remove this asymmetry. You have seen this before when we 21 

converted the ellipse into a circle by rescaling velocity, so let’s try 22 

it here writing 𝑣 = 𝜔0𝑣′, and substitution gives us immediately 23 
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𝑑𝑣′

𝑑𝑡
= −𝜔0𝑥,    and       

𝑑𝑥

𝑑𝑡
=  𝜔0𝑣′.        (81) 1 

Now we can see how to construct a phase plane. Ultimately this 2 

will be programmed, but let’s do it by hand (that’ll explain how to 3 

code the algorithm). We need to see what’s happening at a small 4 

number of points on the phase plane, e.g., (x,v) = (1,1), (1,-1), (-1, 5 

-1) and (-1,1). We can plug these coordinates into eq.81 and look 6 

at the derivatives we get back. Let’s take 𝜔0 = 1; so we build up a 7 

table like this: 8 

x v dx/dt dv/dt 

 1  1  1 -1 

 1 -1 -1 -1 

-1 -1 -1  1 

-1  1  1  1 

 9 

We use the derivatives as follows. At each point (x, v) we create 10 

and plot a little vector (∆𝑥, ∆𝑣) using the idea that ∆𝑥 ≈11 

(𝑑𝑥 𝑑𝑡⁄ )∆𝑡 and the same for v. So, using the same ∆𝑡 we can get 12 

the relative sizes of ∆𝑥 and ∆𝑣 and so draw our vectors. Fig.24 13 

shows the results for our tabulated values. 14 

You can see that all the arrows have the same length, and it’s not 15 

hard to see that they define a circular trajectory  as we have seen, 16 

and moreover the direction is clockwise as we saw above. So we 17 

have reproduced the phase diagram we saw, but starting from the 18 

ODE description of the oscillator and not from the solution! 19 

 
Figure 24. Phase plane showing 𝑑𝑣 𝑑𝑥⁄  vectors at four points. This 
shows a clockwise circulation on the plane. 



Fysika 1A      36 
 

Let’s think about the values of (x,v) we chose. It’s not hard to see 1 

that if we had used (0.5,0.5) etc., then we would have obtained a 2 

circle with a smaller radius. So it looks as though we are finding 3 

solutions to the ODEs for different initial conditions, and the result 4 

is solutions with different amplitudes. 5 

But it gets better. We calculated the vectors at just 4 points in the 6 

phase plane, but why not over the whole phase plane, (well at least 7 

at a grid of points). Then we would get a vector field as shown in 8 

Fig.25. The blue arrows show the field and the red circle a 9 

trajectory for initial conditions (x,v) = (1,0), point 1, or (0,2), point 10 

3. You can see that starting at point 1 or 2 would result in a circle 11 

of smaller radius, corresponding to oscillations of lower amplitude. 12 

 
Figure  25. Vector field corresponding to eq.81, trajectory (1) shown 
in red, see text for other starting points. 

Finally, let’s have a look at the trajectories when we have included 13 

damping. Now the equations, with velocity rescaled, look like this, 14 

𝑑𝑣′

𝑑𝑡
= −𝜔0𝑥 − 2𝛽𝑣′,    and       

𝑑𝑥

𝑑𝑡
=  𝜔0𝑣′,        (82) 15 

and here’s the vector field for 𝛽 = 0.5. You can see how this really 16 

captures the behaviour of the damped oscillator, the ICs are (x, v) 17 

= (2,0) and we rotate along a spiral curve as both x and v get smaller 18 

with time due to the damping. Finally, we arrive at (0,0), no 19 

displacement, no velocity, no bambino, Fig.26. 20 
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Figure 26. Phase plane and example trajectory for eq.82. 

 1 

1.6.4 Phase Plane for a non-linear oscillator 2 

Just for fun, let’s have a look at a non-linear oscillator and discover 3 

what the phase plane can tell us about its phenomena. We shall 4 

have a closer look at non-linear oscillators in Chapter??, but I say 5 

again the following discussion is just for fun. 6 

The Van der Pol oscillator was conceived to model oscillations in 7 

an electronic circuit using vacuum tubes, long before transistors 8 

were invented; Balthasar van der Pol was a Dutch engineer who 9 

did this work in the 1920s. It was later used to model the human 10 

heart. 11 

Here it is expressed as our usual pair of 1st-order ODEs, where e is 12 

the only parameter which is positive. 13 

𝑑𝑥

𝑑𝑡
=  𝑣′,

𝑑𝑣′

𝑑𝑡
= −𝑥 − 𝑒(𝑥2 − 1)𝑣′.        (83) 14 

You will recognize that this is based on our SHO, the only 15 

difference is in the 2nd term on the right of the second ODE, and 16 

this term is interesting. 17 

The term −𝑒(𝑥2 − 1)𝑣′,   contains the factor in brackets that 18 

multiples the velocity 𝑣′, and we know that a term in 𝑣′ means 19 

damping. But look at the bracketed term; when 𝑥 > 1 then this is 20 

positive, so the whole damping term is negative; it is really 21 
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damping. But when 𝑥 < 1 then the damping term is positive, so it 1 

actually is anti-damping pushing energy into the system. So 2 

oscillations of initially small amplitude should grow, and 3 

oscillations of initially large amplitudes should shrink. Let’s see 4 

what happens; glance at Figure 27. 5 

 
Figure 27. Phase plane and two trajectories for the Van der Pol 
oscillator, eq.83. 

The red trajectory is shown for ICs (x, v) = (2, -2) so 𝑥 > 1, and 6 

the curve spirals inwards but gets stuck in a curve (which resembles 7 

a rounded, tilted rectangle). The green trajectory starts at (0.2, 0) 8 

so 𝑥 < 1, and the curve spirals outwards until it gets stuck in that 9 

same curve. This curve is called a limit cycle, and you can just 10 

about see that curves from all ICs will end up in this limit cycle. 11 

This is a fantastic and unique property of non-linear oscillators, 12 

which kept our vacuum tube radios working, and still keeps our 13 

hearts beating. Wherever the oscillator starts on the phase plane, it 14 

will always be attracted to and end up on the limit cycle. If at any 15 

time it is on the limit cycle, and suffers a small jolt which takes it 16 

off the limit cycle, then it will go back. Such a limit cycle is called 17 

an attractor. 18 
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1.7 The Complex Number Approach 1 

1.7.1 The Rotating Vector Representation 2 

One demonstration you may have seen is the light projection of a 3 

peg on a rotating disc onto a screen. Fig.28 shows (a) the 4 

experiment in PhysLab and (b) the corresponding  diagram. 5 

 
 

 
Figure 28. Projection of circular motion on a plane produces the 
displacement shadow of a harmonic oscillator. 

So, as the peg rotates with angular velocity 𝜔𝑡, the parallel light 6 

casts a shadow of the peg at position 𝑥(𝑡) = 𝐴 cos 𝜔𝑡 on the 7 

screen. Of course, if we had another light shining in the orthogonal 8 

direction, then we would get a shadow at 𝑦(𝑡) = 𝐴 sin 𝜔𝑡 on the 9 

other wall (just visible in the above image). We don’t need this 10 

additional shadow to get our SHM expression, so we discard it. 11 

Nevertheless, what this demonstration does show is an intimate 12 
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connection between circular motion and SHM. Circular motion 1 

contains some extra information we don’t need - the sin shadow. 2 

The essence of the above is that SHM can be considered as using 3 

the number pair (𝐴, 𝜔𝑡), and then taking the cos part and discarding 4 

the sin part. Wouldn’t it  be nice if we could write this number pair 5 

as a single number �̂� (of a different type) and use this in our 6 

calculations. Such numbers are called complex which we now need 7 

to understand. 8 

1.7.2 Vectors and Two special rotations 9 

Let’s consider a point on a circle with radius r and angle 𝜃 i.e., with 10 

polar coordinates (𝑟, 𝜃), Fig.29.  11 

 
Figure 29. 

 12 

Using the basis vectors 𝒆𝒙 and 𝒆𝒚 (these are vectors of unit length 13 

defining the directions of the x and y axes, and all vectors are bold) 14 

we can express this point as a vector 15 

𝒓 = 𝒆𝒙 cos 𝜃 + 𝒆𝒙 sin 𝜃 ,        (84) 16 

or changing notation, setting 𝒆𝒙 = 𝟏 and 𝒆𝒚 = 𝒊 17 

𝒓 = 𝟏 cos 𝜃 + 𝒊 sin 𝜃,       (85) 18 

and dropping the 1 gives the result 19 

𝒓 = cos 𝜃 + 𝒊 sin 𝜃 .        (86) 20 

So, all we’ve done here is a bit of vector maths. Now let’s take a 21 

vector r = 1 and let’s rotate the vector by 90° anti-clockwise; 22 
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Fig.30(a) and (b) shows this. The vectors before and after rotation 1 

are 2 

𝒓 = 𝟏,       𝒓′ = 𝒊,            (87) 3 

so we see this rotation is equivalent to multiplying r by i.  4 

 
 
Figure 30. 

Now let’s rotate by 180° Fig.30(c). Here we have 5 

𝒓 = 𝟏,       𝒓′ = −𝟏,            (88) 6 

which is equivalent to multiplying r by -1.  But a 180° rotation is 7 

just two successive 90° rotations, so we have 8 

−1𝒓 = 𝑖2𝒓,       (89) 9 

from which we find 10 

𝑖 = √−1, 11 

which is a pure imaginary number. Perhaps you are sceptical, so 12 

let’s take the general vector in Fig.31 and rotate it by 90°.  13 

 
 
Figure 31. 

So we start off with (I’ll stop the bold stuff) 14 

𝑟 = 𝑎 + 𝑖𝑏, 15 
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and we rotate 90° anti-clockwise 1 

𝑖𝑟 = 𝑖(𝑎 + 𝑖𝑏) = 𝑖𝑎 + 𝑖2𝑏 = 𝑖𝑎 − 𝑏, 2 

which you can see is correct. 3 

Now let’s pause to think about what we have been doing here from 4 

a higher view. We have been manipulating algebraic expressions, 5 

and we have found a link with their geometrical results. So, we are 6 

suggesting that there is a magical relationship between algebra and 7 

geometry. We shall explore this further in the next section. Also, 8 

an expression of the form a + ib is a mix of a real number a and an 9 

imaginary number ib; such a mix is called a complex number. 10 

When we shall use complex numbers in various expressions and 11 

derivations, we shall end up with a complex number, and we accept 12 

that the imaginary part will have no physical significance, so we 13 

shall discard this part. That’s just like discarding the sin shadow in 14 

the demonstration experiment we started with. I hope you see how 15 

things hang together. 16 

1.7.3 The Complex Exponential 17 

In the above discussions, we have drawn diagrams where a point 18 

can be represented as a complex number a + ib but also in terms of 19 

its polar coordinates (𝑟, 𝜃). So we must ask, is there any 20 

relationship between the angle 𝜃 and the complex number 21 

cos 𝜃 + 𝑖 sin 𝜃? It turns out there is, and this is one of the most 22 

beautiful results in mathematics established by Euler in 1747. We 23 

state it here, then show why it works. 24 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃.                   (90) 25 

Let’s tabulate the Taylor expansion of the three terms in eq.90 26 

where we add the terms in the rightmost columns. 27 

𝑒𝑖𝜃 1 𝑖𝜃 1

2!
(𝑖𝜃)2 

1

3!
(𝑖𝜃)3 

1

4!
(𝑖𝜃)4 

1

5!
(𝑖𝜃)5 

 1 𝑖𝜃 −
1

2!
𝜃2 −𝑖

1

3!
𝜃3 

1

4!
𝜃4 𝑖

1

5!
𝜃5 

cos 𝜃 1  −
1

2!
𝜃2  1

4!
𝜃4  

𝑖 sin 𝜃  𝑖𝜃  −𝑖
1

3!
𝜃3  𝑖

1

5!
𝜃5 

We can see how  𝑒𝑖𝜃 expands to alternately give the terms for the  28 

cos 𝜃 and 𝑖 sin 𝜃. Nice eh? 29 
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Before we apply all of this to our oscillation theory, there is one 1 

more beautiful result which we shall need. Consider the complex 2 

number3 �̂� = 𝑟𝑒𝑖𝜃. Let’s see what happens when we differentiate it 3 

𝑑�̂�

𝑑𝜃
= 𝑖𝑟𝑒𝑖𝜃 = 𝑖�̂�,                (91) 4 

and on the right hand side we recognize 𝑖�̂� as the complex 5 

number �̂� having been rotated anti-clockwise by 90°. So 6 

algebraic differentiation is equivalent to a geometrical 7 

rotation. This will be incredibly useful in our study of 8 

oscillations, since through their ODEs we are differentiating all 9 

the time! Again complex numbers bridge algebra and 10 

geometry. 11 

1.7.4 Linking with Simple Harmonic Motion 12 

To take another step forward in our understanding of complex 13 

numbers, let’s apply them to the SHO we have already seen. We 14 

have the ODE and a candidate solution 15 

𝑑2𝑦

𝑑𝑡2
= −

𝑘

𝑚
𝑦,          𝑦(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑).      (92)  16 

So our angle 𝜃 =  𝜔𝑡 + 𝜑 and we look for a complex solution of 17 

the form 18 

�̂� = 𝐴𝑒𝑖(𝜔𝑡+𝜑) = 𝐴𝑒𝑖𝜔𝑡𝑒𝑖𝜑.      (93) 19 

We form the first and second derivatives as usual, and assume A 20 

is constant 21 

�̂̇� = 𝑖𝜔𝐴𝑒𝑖(𝜔𝑡+𝜑) = 𝑖𝜔�̂� ,         (94) 22 

�̂̈� = (𝑖𝜔)2𝑒𝑖(𝜔𝑡+𝜑) = −𝜔2�̂� ,              (95) 23 

and we substitute into eq.92 to check all is well 24 

−𝜔2�̂� =
𝑘

𝑚
 �̂� ,       (96) 25 

and thankfully, we recover eq.7. If you want to repeat the above 26 

development using trig functions and complex numbers, please go 27 

 
3 We shall denote a complex number using a hat like this �̂� while any 

real variables will be hat-less. 
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ahead, but it will take you some effort; this could be a useful 1 

exercise in appreciating the power of complex numbers. 2 

So, we have taken the algebraic approach, but we know that there 3 

is an associated geometrical representation, so let’s look at this, 4 

Fig.32. The vectors �̂�, �̂̇�, and �̂̈� have been drawn in different colors 5 

since they are different quantities with different units. Their sizes 6 

have been chosen to reflect 𝜔 > 1. Each vector shows a phase 7 

advance by 𝜋/2 over its predecessor. As time runs on you must see 8 

the group of vectors rotating in an anti-clockwise direction but 9 

 
Figure 32. Vectors: displacement (black), velocity (green) and 
acceleration (red). Phase advances are clearly 𝜋/2. 

maintaining the same phase difference between each. Also shown 10 

are the projections (shadows) of the complex quantities on the real 11 

(horizontal) axis; these are the observables. If you wish to calculate 12 

these, please go ahead, 13 

𝑦(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑),                          14 

�̇�(𝑡) = −𝜔𝐴 sin(𝜔𝑡 + 𝜑),                    15 

�̈�(𝑡) = −𝜔2𝐴 cos(𝜔𝑡 + 𝜑).       (97) 16 

You might be able to see the phase difference between these 17 

equations, but I think you’ll agree this is more explicit using 18 

complex numbers and their geometrical representation. 19 

1.8 Damped Harmonic Motion 20 

1.8.1 A Straightforward Approach 21 

Here’s our first major application of complex numbers to a serious 22 

problem. The ODE for damped harmonic motion using complex 23 

variables is just 24 
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�̂̈� + 2𝛽�̂̇� + 𝜔0
2�̂� = 0,           (98) 1 

where 𝜔0
2 = 𝑘 𝑚⁄  is the natural frequency of undamped 2 

oscillations of the mass. We then take a guess at a solution and 3 

write down its first and second derivates (multiplying by 𝑖𝜔). Note 4 

that in our guess we use a different angular frequency 𝜔 since we 5 

must not assume the damped oscillation frequency is 𝜔0. We have 6 

two arbitrary coefficients in our guess, A and 𝜑. 7 

 8 

 9 

�̂� = 𝐴𝑒𝑖(𝜔𝑡+𝜑),                10 

�̂̇� = 𝑖𝜔�̂� ,                           11 

�̂̈� = −𝜔2�̂�,              (99) 12 

and substituting into eq.98 we find 13 

−𝜔2 + 2𝑖𝛽𝜔 + 𝜔0
2 = 0.                (100) 14 

Now this is a quadratic equation in unknown 𝜔 which we can easily 15 

solve, but we must be careful, since eq.100 as it stands cannot be 16 

solved since we have two real terms and one imaginary term. There 17 

is nothing for the imaginary term to cancel with (to give 0), so we 18 

conclude that 𝜔 must be a complex frequency, whatever that may 19 

mean. We should have written the second line of eq.99 as �̂̇� = 𝑖�̂��̂�. 20 

We therefore express 𝜔 as a sum of a real part and an imaginary 21 

part 22 

�̂� = 𝜔𝑅 + 𝑖𝜔𝐼 ,            (101) 23 

where both 𝜔𝑅 and 𝜔𝐼 are real. Substituting into eq.100 24 

(𝜔𝑅 + 𝑖𝜔𝐼)2 + 2𝑖𝛽(𝜔𝑅 + 𝑖𝜔𝐼) + 𝜔0
2 = 0,     25 

−𝜔𝑅
2 + 𝜔𝐼

2 − 2𝑖𝜔𝑅𝜔𝐼 + 2𝑖𝛽𝜔𝑅 − 2𝛽𝜔𝐼 + 𝜔0
2 = 0.   (102) 26 

Collecting real and imaginary parts 27 

𝑅𝑒:      − 𝜔𝑅
2 + 𝜔𝐼

2 − 2𝛽𝜔𝐼 + 𝜔0
2 = 0, 28 

𝐼𝑚:      𝜔𝑅𝜔𝐼 = 𝛽𝜔𝑅 ,          (103) 29 

which leads to 30 
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𝜔𝐼 = 𝛽,                             1 

𝜔𝑅
2 =  𝜔0

2 − 𝛽2.      (104) 2 

Now let’s bring down our starting guess and insert the expression 3 

for complex frequency �̂� 4 

�̂� = 𝐴𝑒𝑖(�̂�𝑡+𝜑) = 𝐴𝑒−𝜔𝐼𝑡𝑒𝑖(𝜔𝑅𝑡+𝜑),      (105) 5 

and we see that the imaginary frequency part has specified a 6 

damping term and the real part is a usual harmonic frequency. 7 

Finally inserting eq.104 we end up with 8 

�̂� = 𝐴𝑒−𝛽𝑡𝑒
𝑖(√ 𝜔0

2−𝛽2𝑡+𝜑)
,                  (106) 9 

so damping has reduced the oscillation frequency from the 10 

undamped free value 𝜔0 to the smaller value 11 

𝜔 = √ 𝜔0
2 − 𝛽2.         (107) 12 

Of course we are assuming small damping here with 𝛽 < 𝜔0; we’ll 13 

return to this l,ater. But let’s copy eq.?? and color code it, 14 

(108) 

The factor shaded yellow corresponds to a vector rotating around a 15 

circle with frequency 𝜔; the red damping factor can be interpreted 16 

as a time-varying radius of the same circle. We shall develop this 17 

idea in the following section. 18 

Fig.33 shows plots of DHM. Top shows the displacement y(t) 19 

together with the decay envelope, and bottom shows the velocity 20 

v(t) together with y(t). You can see that the velocity leads the 21 

displacement; peaks in velocity appear before peaks in 22 

displacement. We shall soon see why this happens. 23 
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Figure 33. DHM. Top trace shows displacement (blue) with 
exponential envelope (red dotted). Bottom trace shows displacement 
and velocity (red). 

 1 

1.8.2 An Alternative Approach 2 

We noted at the end of the last explanation that the complex 3 

oscillation �̂� could be viewed as a vector rotating around a circle 4 

with constant frequency but whose radius was a function of time. 5 

So we are thinking of a solution of the form 6 

�̂� = 𝑟(𝑡)𝑒𝑖𝜃,            (109) 7 

where the real function r(t) plays the role of a time-varying 8 

trajectory radius. We have also dropped the phase, as it was not 9 

instrumental in the above analysis, and have replaced 𝜔𝑡 by 𝜃; all 10 

will become clear! 11 

Now let’s consider ‘decoupling’ the equation into two 1st-order 12 

equations, one for 𝜃(𝑡) and one for 𝑟(𝑡). The simplest we can 13 

imagine are 14 

�̇� = 𝜔,                     15 

�̇� = −𝛾𝑟,    (110) 16 

and note we have not used any parameters in the ODE eq.110. 17 

Taking the derivatives of eq.109 we find 18 
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�̂̇� = �̇�𝑒𝑖𝜃 + 𝑖𝑟�̇�𝑒𝑖𝜃.         (111) 1 

Bringing in our 1st-order guess, eq.109 we find 2 

�̂̇� =  −𝛾𝑟𝑒𝑖𝜃 + 𝑖𝜔𝑟𝑒𝑖𝜃,        (112) 3 

�̂̈� = [𝛾2 − 2𝛾𝑖𝜔𝑟 − 𝜔2𝑟]𝑒𝑖𝜃,      (113) 4 

and solving eq.112 for the rightmost term and inserting into 5 

eq.113 we have 6 

�̂̈� + 2𝛾�̂̇� + (𝜔2 + 𝛾2)�̂� = .      (114) 7 

This has the same structure as eq.98, so we conclude our guess is 8 

correct with 9 

𝛾 = 𝛽,        𝜔2 = 𝜔0
2 − 𝛽2.         (115) 10 

Inserting these into our two 1st-order ODEs we have 11 

�̇� = √𝜔0
2 − 𝛽2,        �̇� = −𝛽𝑟.    (116)                12 

Integrating these equations we find 13 

𝜃(𝑡) = √𝜔0
2 − 𝛽2 𝑡,       𝑟(𝑡) = 𝑒−𝛽𝑡,      (117) 14 

and so eq.109 becomes 15 

�̂� = 𝑟(𝑡)𝑒𝑖𝜃 =  𝑒−𝛽𝑡𝑒
𝑖√𝜔0

2−𝛽2 𝑡
,           (118) 16 

which we have already seen, so everything looks good. The 17 

takeaway from this analysis is decoupling the 2nd-order ODE into 18 

one 1st-order equation for radius evolution and a second 1st-order 19 

equation for angle evolution. Such an approach may be useful in 20 

more advanced situations. 21 

1.8.3 The Geometrics – Phase Angles 22 

We have emphasized the correspondence between algebra and 23 

geometry established using complex numbers. In the development 24 

above, we neglected the geometrics because there was so much 25 

going on with algebra. So now let’s look at vectors and phases. We 26 

are particularly interested in the phase difference between 27 

displacement and velocity and displacement amplitude. 28 

Let’s start afresh with our guess less the arbitrary initial phase. 29 
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�̂� = 𝐴𝑒𝑖�̂�𝑡 . 1 

First, we find the velocity 2 

�̂̇� = 𝑖�̂��̂� = (𝑖𝜔𝑅 − 𝛽)�̂� ,         (119) 3 

which tells us how to create the velocity vector from the 4 

displacement vector, assuming it is pointing to the right. We draw 5 

the vector 𝑖𝜔𝑅�̂� on the imaginary axis and draw the vector −𝛽�̂� on 6 

the horizontal axis and add these together to give �̂̇�, shown in 7 

Fig.34 (green arrow). We see that the phase angle between 8 

displacement and velocity is just 9 

 𝜑 +
𝜋

2
,     where    𝜑 = tan−1

𝛽

√𝜔0
2 − 𝛽2

,            (120) 10 

and we see the velocity leads the displacement. If there is no 11 

damping then the lead is 90°, and this increases with damping. 12 

To get the angle between acceleration and displacement, we have 13 

�̂̈� = −𝜔2�̂� = −(𝜔𝑅
2 − 𝛽2)�̂� − 2𝑖𝛽𝜔𝑅�̂� ,       (121) 14 

which tells us to draw a vector −2𝛽𝜔𝑅�̂� on the real axis and 15 

−(𝜔𝑅
2 − 𝛽2)�̂� on the imaginary axis, as shown in Fig.34 16 

 
Figure 34. Displacement vector (blue), velocity vector (green) and 
acceleration vector (red). Phases as calculated in the text. 

Following an unwelcome skirmish with algebra, it turns out 17 

that 𝜃 = 2𝜑 so in Fig.34 the velocity leads the position by 𝜋 2⁄ +18 

 𝜑 and the acceleration also leads the velocity by 𝜋 2⁄ +  𝜑. As 19 
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expected, and shown above, both angles reduce to 𝜋 2⁄  when there 1 

is no damping.  2 

The takeaway from this is that there is a phase difference between 3 

position and velocity, and between velocity and acceleration for a 4 

DHO, and these differences increase with damping. So damping 5 

does more than progressively reduce the amplitude of oscillation. 6 

1.9 Forced Damped Harmonic Motion 7 

Here we shall take our simple mass-spring experiment and add a 8 

forcing term; an external force which varies harmonically, 9 

something like 𝐹 = 𝐹0 cos 𝜔𝑡 where 𝜔 is the frequency of the force 10 

which is not the same as the damped frequency of free oscillation 11 

of the mass. The resulting behaviour is quite complicated, so we’ll 12 

build up a discussion in stages; a good place to start is to review 13 

some experimental results. 14 

1.9.1 Some Experimental Results 15 

The first thing we observe is that the position-time graph shows 16 

two stages; there is an initial transient state where the oscillation 17 

amplitude fluctuates, and a final steady state where the amplitude 18 

is constant, see Fig.35 You can see that the transient lasts just 19 

 
Figure 35. Driven Damped Harmonic Motion. Displacement time trace 
shows initial transient followed by a stable steady state. 

over 2 secs after which we have a steady state. For this experiment 20 

the driving frequency is much lower than the natural frequency of 21 

oscillation. The transient is dominated by the natural frequency and 22 

the steady state by the forcing frequency. This behaviour is hardly 23 

surprising since we have a battle between the mass-spring which 24 

‘wants’ to oscillate at its natural frequency, and the applied force 25 

which demands the mass-spring oscillates at the forcing frequency. 26 

After enough time, the applied force wins the battle. 27 
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1.9.2 How to force an oscillator 1 

Before we build the ODE describing the motion of the mass, we 2 

must decide how the force is to be applied. There are two choices; 3 

first we have the situation where the force is applied directly to the 4 

mass. This is the easiest to understand. A good example is electric 5 

hair-clippers shown exploded in Fig.36. A horizontal arm 6 

connected to the clippers is free to oscillate around pivot P. The 7 

arm is connected to the casing through a spring, and the force is 8 

applied directly to the arm from an electromagnet M. 9 

 
Figure 36. Hair clippers, and example of DDHO. 

In this case we could construct the ODE, 10 

𝑚𝐿2�̈� + 𝑏�̇� + 𝑘𝑠 sin 𝜃 = 𝐹(𝑑1, 𝑑1, 𝜃) cos 𝜔𝑡,            (122) 11 

where we are rotating around the pivot point, and the force is a 12 

function of the distances shown and also the angle of rotation. 13 

The second excitation method involves an indirect application of 14 

the force, usually by displacing one end of the spring. A couple of 15 

examples spring to mind. First is a typical lab experiment where a 16 

mass is suspended from a spring attached to a vibrator; a 17 

transparent cylinder constrains the mass to move vertically 18 

Fig.37(a). A second example is a model of earthquakes causing a 19 

building to oscillate, Fig.37(b). Here the ground movement 𝑥𝑔(𝑡) 20 

stretches the springs which exert a force indirectly on the mass. 21 
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Figure 37. Two examples of indirect force application through a 
movement x(t). 

In this case the ODE becomes 1 

𝑚�̈� = −𝑘𝑥 − 𝑏�̇� + 𝑘𝑥𝑔(𝑡),           (123) 2 

where 𝑥𝑔(𝑡) could take on a harmonic form. 3 

 4 

1.9.3 The Steady-state Solution 5 

Let’s now apply complex numbers and attempt to solve the ODE 6 

expressed in terms of complex variables, 7 

�̂̈� + 2𝛽�̂̇� + 𝜔0
2�̂� = 𝑓0𝑒𝑖𝜔𝑡,             (124) 8 

where 𝑓0 is the amplitude of the driving force divided by the mass 9 

(so all terms have units of acceleration) and the other symbols are 10 

as usual. 11 

For the steady-state solution, the amplitude does not vary, so we 12 

need not include a damping term 𝑟(𝑡) in the solution. We do expect 13 

a phase difference between force and displacement, so we must 14 

include this in our guess. We therefore propose: 15 

�̂� = �̂�𝑒𝑖𝜔𝑡,               (125) 16 

where we have used the forcing frequency 𝜔, (since we are in the 17 

steady state where forcing and response frequencies are the same). 18 

The complex amplitude �̂� is used to contain a possible phase shift 19 

(−𝜔2 + 2𝛽𝑖𝜔 + 𝜔0
2)�̂�𝑒𝑖𝜔𝑡 = 𝑓0𝑒𝑖𝜔𝑡 ,          (126) 20 

and so we have 21 

�̂� =
𝑓0

(−𝜔2 + 2𝛽𝑖𝜔 + 𝜔0
2)

.            (127) 22 

Now we can express the complex coefficient �̂� in its polar form 23 

consisting of a real amplitude A and a real phase 𝛾 24 

�̂� = 𝐴𝑒−𝑖𝛾.         (128) 25 

We need to solve this for A to figure out how the response 26 

amplitude depends on the forcing frequency and system 27 
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parameters. To do this we multiply eq.128 by its complex 1 

conjugate, 2 

𝐴2 = �̂��̂�∗ =
𝑓0

(−𝜔2 + 2𝛽𝑖𝜔 + 𝜔0
2)

𝑓0

(−𝜔2 − 2𝛽𝑖𝜔 + 𝜔0
2)

 3 

=
𝑓0

2

(𝜔0
2 − 𝜔2)2 + 4𝛽2𝜔2

 .             (129) 4 

That’s half the work done; before we proceed, let’s just plot out 5 

curves of amplitude from eq.129 over a range of forcing 6 

frequencies for a couple of values of damping, Fig.38. The forcing 7 

frequency scale is expressed as multiples of 𝜔0 and we have also 8 

shown the damping 𝛽 as multiples of 𝜔0. 9 

 
Figure 38. Response curves from eq. 129. 

We shall discuss these curves in detail a little later on, but we can 10 

note some important characteristics. First, the response amplitude 11 

is maximum when the forcing frequency is close to the natural 12 

frequency 𝜔 𝜔0 ≈ 1⁄ . Second, the size of the response decreases 13 

as damping is increased, hardly surprising since damping removes 14 

energy from the system. Third, the response curve shows a peak 15 

with a certain width and this width increases with increased 16 

damping, so the system is less ‘tuned’ to the forcing. More on this 17 

later. 18 

Now let’s return to complete the solution to our system; we still 19 

need an expression for the phase 𝛾 and, more to the point, 20 

understand what this means. Remember that 𝛾 is the phase 21 
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difference by which the oscillator’s motion lags behind its driving 1 

force. 2 

Combining eq.127 and eq.128 gives 3 

𝑓0𝑒𝑖𝛾 = 𝐴(𝜔0
2 − 𝜔2 + 2𝛽𝑖𝜔).         (130) 4 

Now we invoke the power of complex numbers; we can construct 5 

the equivalent geometric form of eq.126. Consider the right-hand 6 

side. This tells us to draw a horizontal vector 𝐴(𝜔0
2 − 𝜔2) which 7 

is the real part of the right-hand side and then add on a vertical 8 

vector 2𝐴𝛽𝜔 which is the imaginary part. Now the left-hand side 9 

says draw a vector of length 𝑓0 at an angle 𝛾 to the horizontal, and 10 

these two vectors must be identical, since the equation says so. We 11 

end up with the vector diagram drawn in Fig.39 12 

 
Figure 39. Geometric interpretation of eq.130. Complex forcing vector 
(red) is sum of real motion vector (green) and imaginary damping 
(blue). 

Now we can easily obtain the phase 𝛾, 13 

𝛾 = tan−1 (
2𝛽𝜔

𝜔0
2 − 𝜔2

).               (131) 14 

So our hunt for a solution to the ODE is now complete. The final 15 

stage is to take the real part of 16 

�̂� = �̂�𝑒𝑖𝜔𝑡 =  𝐴𝑒−𝑖𝛾𝑒𝑖𝜔𝑡 , 17 

and we end up with 18 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 − 𝛾),                  (132) 19 

where we have expressions for A and 𝛾. We have already seen how 20 

the amplitude depends on forcing frequency; now we need to plot 21 

how the phase 𝛾 depends on this, see Fig.40. Note this phase is a 22 

phase lag showing that the response motion is delayed from the 23 

forcing. 24 
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Figure 40. Phase relation from eq.131 

The main takeaway here is that the phase increases continually 1 

from 0 to 180° as the forcing frequency increases and is exactly 90° 2 

when the system is forced at its natural frequency. To make this 3 

concrete, consider the behaviour of a can of soup suspended from 4 

a long rubber band held in your hand and forced with a frequency 5 

lower than 𝜔0 and then with a frequency above 𝜔0. If you actually 6 

perform this experiment, try to keep the amplitude of your hand 7 

constant. The results are in Fig.41. 8 

 
Figure 41. Suspended can of soup, (a) shows it at rest. In (b) the forcing 
frequency is low, and the can moves (arrows show velocity) in phase 
with the forcing. In (c) the response is out of phase (motion 
exaggerated) 

You can see for low frequencies, when the hand moves up the can 9 

moves up and vice-versa, this is response in phase with the forcing. 10 

For higher frequencies, when the hand moves up the can moves 11 

down, and vice-versa, this is out-of-phase response. Note that this 12 

is true irrespective of the amount of damping 𝛽. The effect of 13 
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increasing 𝛽 is to ‘smooth out’ the rate of change from in-phase to 1 

out-of-phase response. 2 

1.9.4 The Force Balance Analysis 3 

Let’s work with this ODE where we make the experimental 4 

coefficients m, k, and b explicit, but remain using complex 5 

numbers. 6 

𝑚�̂̈� + 𝑏�̂̇� + 𝑘�̂� = 𝐹0𝑒𝑖𝜔𝑡 ,             (133) 7 

where 𝐹0 is the amplitude of the driving force. This ODE expresses 8 

an equality between various forces within the oscillator and the 9 

driving force 10 

𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑟𝑒𝑠𝑖𝑠 + 𝐹𝑠𝑡𝑖𝑓𝑓 = 𝐹𝑎𝑝𝑝𝑙𝑦 .        (134) 11 

The vectors representing these forces are shown on the Argand 12 

diagram in Fig.42 for a particular set of coefficients. 13 

 
Figure 42. Force balance vectors. Apply (purple) is the sum of inertia 
(red), resistance (green) and stiffness (blue). Phase angle is shown. 

The phase angle 𝛾is shown; remember this is the phase difference 14 

by which the oscillator motion (displacement) lags behind the 15 

driving force. We shall consider three special cases where this 16 

‘force balance’ equation can be simplified, leading to some 17 

approximate solutions for the oscillation displacement. 18 
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Here we consider three special cases, and for each we assume that 1 

damping is relatively small, 𝛽 ≪ 𝜔. We shall draw the following 2 

forces on the Argand diagram (i) the exciting force, (ii) the force 3 

provided by the spring, (iii) the damping force, (iv) the force 4 

experienced by the mass.  5 

1.9.4.1 Fast Driving 6 

Here we consider 𝜔 ≫ 𝜔0. Since the driving frequency 𝜔 is high, 7 

the inertia force 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 will be relatively large (since it is 8 

proportional to 𝜔2) and we can ignore 𝐹𝑟𝑒𝑠𝑖𝑠 and 𝐹𝑠𝑡𝑖𝑓𝑓. The force 9 

balance then becomes 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝐹𝑎𝑝𝑝𝑙𝑦 and eq.133 simplifies to  10 

𝑥(𝑡) = −
(𝐹0 𝑚⁄ )

𝜔2
cos 𝜔𝑡,                   (𝑥𝑥𝑎) 11 

and we see that 𝑥(𝑡) is small. You can see from the vectors in 12 

Fig.43 that the driving force is in phase with the acceleration, 13 

(𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎) since it provides essentially all of the force. Also, the 14 

driving force and the displacement are out of phase, (𝛾 ≈ 180°) 15 

which gives the minus sign in eq.135. You can see this in the soup-16 

can sketch Fig.41(c). The force values and the vectors were 17 

calculated for 𝜔0 = 𝜋 and 𝜔 = 10; we have chosen these values 18 

so the vectors do not overlap. 19 

 
Figure 43. Driving force (purple) in phase 
with the acceleration (red). 

Force values. 
Finert=1.096 + 0.122i 
Fresis=0.01216-0.1096i 
Fstiff=-0.108177-0.012i 
Fapply = 1 

 20 

1.9.4.2 Slow Driving 21 

Here we consider 𝜔 ≪ 𝜔0. Here the acceleration and velocity are 22 

both relatively small, so we can ignore 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 and 𝐹𝑟𝑒𝑠𝑖𝑠 and so 23 
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the force balance becomes 𝐹𝑠𝑡𝑖𝑓𝑓 = 𝐹𝑎𝑝𝑝𝑙𝑦 and eq.133 simplifies 1 

to 2 

𝑥 =
(𝐹0 𝑚⁄ )

𝜔0
2 cos 𝜔𝑡 .                   (136) 3 

The vector diagram Fig.44 calculated for 𝜔0 = 𝜋 and 𝜔 = 1 shows 4 

that the driving force is now in phase with the displacement, so the 5 

displacement just follows the force as shown for soup can in 6 

Fig.41(b). 7 

 

 
Figure 44. Driving force (purple) in phase 
with displacement (blue) 

Force values 
Finert = -0.111 +0.013i 
Fresis =  0.0126 +0.1113i 
Fstiff =  1.099 - 0.1239i 
Fapply = 1 

 8 

1.9.4.3 Driving at Resonance 9 

Here we consider 𝜔 = 𝜔0. Looking at the vectors and force values 10 

in Fig.45 we see that  𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑠𝑡𝑖𝑓𝑓 = 0, so the stiffness and 11 

inertia forces are equal and opposite. The driving force equals the 12 

resistance force, and they are in phase 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑎𝑝𝑝𝑙𝑦 and are 13 

90° out of phase with the inertia and stiffness forces. Since these 14 

force-pairs are orthogonal, they do not interact, and so we 15 

effectively have two ‘subsystems’; the spring and mass force each 16 

other just as if they were performing undamped harmonic motion, 17 

and the applied force takes away the damping so this can happen. 18 

Simplifying eq.133 we find 19 

𝑥(𝑡) =
(𝐹0 𝑚⁄ )

2𝛽𝜔0
sin 𝜔𝑡,           (137) 20 
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where the 90° phase shift, we mentioned above is apparent. Since 1 

driving cancels damping, this explains the peak in the amplitude 2 

response curve. Looking at it in another way, the driving force is 3 

in phase with the velocity, (green arrow in Fig.45), and since power 4 

is force times velocity, the input power is largest when force and 5 

velocity are in phase. We shall come onto power shortly. 6 

 
 

 
Figure 45. Phases at resonance. Driving 
force (purple) equals resistance force 
(green). Acceleration (red) is equal and 
opposite to the spring force (blue). 

Force values 
Finert = 0 + 3.14i 
Fresis = 1.0 
Fstiff =   0 - 3.14i 
Fapply = 1.0 

 7 

 8 

1.9.5 Designing for Resonance 9 

We have seen that the amplitude of the response shows a definite 10 

peak when the forcing frequency is close to the natural frequency 11 
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of the system. It’s worth giving this a little more thought. Clearly 1 

the amplitude is a maximum when the denominator of eq.129 2 

(𝜔0
2 − 𝜔2)2 + 4𝛽2𝜔2           (138) 3 

is a minimum. How can we arrange this? Well it depends. 4 

Sometimes you need to tune the system (i.e., change 𝜔0) when the 5 

forcing frequency 𝜔 is known, and fixed. An example could be 6 

designing a wave energy convertor which bobs up and down in 7 

ocean waves, which have a typical average frequency. Then the 8 

minimum clearly occurs when you set 𝜔0 = 𝜔. So you choose the 9 

equivalent mass and spring constant of the bob. In other situations 10 

𝜔0 may be fixed and you need to adjust 𝜔0 for resonance. One 11 

example is a paint mixer, where a bucket of paint components is 12 

shaken on a table connected with springs. In this case 13 

differentiation shows that you get a resonant peak when 14 

𝜔 = √𝜔0
2 − 2𝛽2,                    (139) 15 

which is close to 𝜔0 when damping is relatively small. In any 16 

case, a rough guideline for the maximum amplitude, from eq.129 17 

is 18 

𝐴𝑚𝑎𝑥 ≈
𝑓0

2𝛽𝜔0
.         (140) 19 

1.9.6 Difference between DHO and Driven-DHO 20 

There are many differences, but here we summarize a few to avoid 21 

confusion since different terms mean different things. Phase 22 

differences. For a DHO the phase difference between velocity and 23 

displacement depends on the amount of damping. For DDHO this 24 

phase difference is always 90°. 25 

1.10 Forced Oscillations -  Powers 26 

So far, we have viewed driving a damped harmonic oscillator as 27 

providing an exciting force and we were interested to see its 28 

response displacement. There is another view we can take which is 29 

very useful in two broad areas, (i) general engineering applications, 30 

(ii) electrical and electronic circuits. Here, we are interested in 31 

discussing the power supplied to the damped oscillator, and in 32 

particular where it ends up within the system components of spring, 33 

mass, and damping. 34 
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The input power is just the rate of supplying energy to the 1 

oscillator; since the work done has the form 𝐹𝑥 then the expression 2 

for power has the form 𝑃 = 𝑑(𝐹𝑥) 𝑑𝑡⁄  which for a constant force 3 

is just 𝑃 = 𝐹𝑣. So now we are interested in the force and velocity. 4 

You may remember that the power supplied to an electrical circuit 5 

has the form 𝑃 = 𝑉𝐼 where voltage is analogous to force, and 6 

current (which is a flow) is analogous to velocity. 7 

1.10.1 The Concepts of Reactance and Impedance 8 

Let’s start with our ODE in complex form, but using our physical 9 

parameters m, k, and b. As mentioned above, we shall focus on 10 

using velocity �̂̇� rather than displacement �̂� as our principal 11 

variable. So we would like to reformulate our ODE to link force 12 

and velocity. Starting with 13 

𝑚�̂̈� + 𝑏�̂̇� + 𝑘�̂� = 𝑓0𝑒𝑖𝜔𝑡 ,             (141) 14 

we know that velocity �̂̇� = 𝑖𝜔�̂� and that acceleration �̂̈� = 𝑖𝜔�̂̇� so 15 

the above equation becomes, writing the r.h.s. as 𝑓 16 

(𝑖𝑚𝜔 + 𝑏 +
𝑘

𝑖𝜔
) �̂̇� = 𝑓.             (142) 17 

Denoting the real part of the bracket as R and the complex part as 18 

X we have 19 

𝑅 = 𝑏,            𝑖𝑋 =  𝑖 (𝑚𝜔 −
𝑘

𝜔
).             (143) 20 

So the sum becomes the complex impedance �̂�, a term familiar in 21 

electricity, 22 

�̂� = 𝑅 + 𝑖𝑋,     (144) 23 

and we call the components of impedance the resistance R and 24 

reactance X. You must understand that resistance is connected 25 

with damping, and reaction with the oscillation. As expected, �̂� is 26 

a complex quantity and may be expressed as 27 

�̂� = |�̂�|𝑒𝑖𝜑,           (145) 28 
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where 𝜑 is the phase angle between real and imaginary components 1 

of 𝑍4̂. This is shown in Fig.46. 2 

 
Figure 46. Relation between impedance and its components, 
resistance and reactance. 

The phase angle is given by 3 

𝜑 = tan−1
𝑋

𝑅
.                     (146) 4 

From eq.142 and eq.144 we obtain our desired relation between 5 

force and velocity as  6 

𝑓 = �̂��̂�,              (147) 7 

where we will use symbol �̂� for the complex response velocity.  8 

Now let us consider the balance of forces within our oscillator. The 9 

ODE eq.141 can be interpreted as a statement of this force balance 10 

𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑑𝑎𝑚𝑝 + 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 ,               11 

𝑚�̂� + 𝑏�̂� + 𝑘�̂� = �̂� = �̂��̂�,             (148) 12 

or, in terms of �̂� 13 

 
,(149) 

where we show which terms lead to the reactance and resistance to 14 

give the impedance �̂� = 𝑖𝑋 + 𝑅. 15 

 
4 This is not the same as all previous uses of this symbol to represent 

phase (we ran out of good symbols). This is a different phase! 
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An example is given in Fig.47 for parameters m = 1kg, k = 1 

9.87N/m, b = 1kg/s and forcing frequency 𝜔 = 4. The direction of 2 

the applied force is indicated to provide a reference point for this 3 

and subsequent vector plots. 4 

 
Figure 47. Acceleration (red) and spring force (blue) have phase 
difference 180°. Black (reactance) and green (resistance) sum to the 
‘impedance force’ (purple) which is the applied force. 

Check that you understand that the inertia force 𝑚�̂� and the spring 5 

force 𝑘�̂� have a phase difference of 180°. You can see that from 6 

the expression for reactance in eq.149 where they have opposite 7 

signs. Or you could argue from the ODE that 𝑚�̂� = −𝑘�̂�, or using 8 

complex numbers that �̂� = 𝑖𝜔�̂� and �̂� = 𝑖𝜔�̂� hence �̂� = −𝜔2�̂�).  9 

Note also the triad of green, black and magenta vectors which 10 

represent, respectively, the resistance force 𝑅�̂�  and the reactance 11 

force 𝑖𝑋�̂� which sum to give the ‘impedance force’ 𝑘𝑍 which is of 12 

course the applied force �̂�. 13 

1.10.2 Power Delivered and Consumed by the DHO 14 

Here we shall make a distinction between the power delivered to 15 

the oscillator which will have the form 𝑃 = 𝐹𝑣 (like 𝑃 = 𝑉𝐼 for an 16 

electrical circuit) and the power consumed by the oscillator (by its 17 

damping) which will have the form 𝑃 = 𝑅𝑢2 (like 𝑃 = 𝑅𝐼2 for an 18 

electrical circuit. 19 

Let’s start with the power delivered to our oscillator. Power is a 20 

real quantity and given a complex driving force and response 21 

velocity then we must calculate 22 

𝑃(𝑡) = 𝑅𝑒{𝑓}. 𝑅𝑒{�̂�} .                     (150) 23 
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Using complex conjugates to get both real terms on the right we 1 

have 2 

𝑃(𝑡) = (
1

2
𝑓𝑒𝑖𝜔𝑡 +

1

2
𝑓∗𝑒−𝑖𝜔𝑡) (

1

2
�̂�𝑒𝑖𝜔𝑡 +

1

2
�̂�∗𝑒−𝑖𝜔𝑡).       (151) 3 

Note we have used a complex force and velocity amplitudes to 4 

contain any phase difference between force and velocity. 5 

Expanding, we get 6 

𝑃(𝑡) =
1

4
(𝑓�̂�∗ + 𝑓∗�̂�) +

1

4
(𝑓�̂�𝑒2𝑖𝜔𝑡 + 𝑓∗�̂�∗𝑒−2𝑖𝜔𝑡).    (152)  7 

This may look a little daunting at first but look for the symmetries 8 

and you will see it becomes interesting. The last two terms are 9 

complex conjugates, so represent a real harmonic oscillation with 10 

frequency 2𝜔, so their average over one period of oscillation is 11 

zero. Hence the delivered time average is  12 

𝑃(𝑡)̅̅ ̅̅ ̅̅ =
1

4
𝑓�̂�∗ + 𝑐𝑐 =  

1

2
𝑅𝑒{𝑓�̂�∗}       (153) 13 

Using the relation 𝑓 = �̂��̂� to replace �̂�∗ we have 14 

𝑃(𝑡)̅̅ ̅̅ ̅̅ =
1

2
 𝑅𝑒 {𝑓

𝑓∗

�̂�∗
}  =  

1

2
 𝑅𝑒 {�̂�

𝑓𝑓∗

�̂��̂�∗
} =  

1

2
 𝑅𝑒{�̂�}

|𝑓|
2

|�̂�|
2 15 

=
1

2

𝑅

𝑅2 + 𝑋2
 |𝑓|

2
              (154)   16 

Keep this expression in mind for the moment, since we are about 17 

to see it again. 18 

Now let’s derive an expression for the power consumed by the 19 

damping. This is  20 

𝑃𝑑𝑎𝑚𝑝 = 𝑅𝑢2 = 𝑅 (
1

2
�̂�𝑒𝑖𝜔𝑡 +

1

2
�̂�∗𝑒−𝑖𝜔𝑡)

2
 21 

=
1

4
(2�̂��̂�∗ + �̂�2𝑒2𝑖𝜔𝑡 + �̂�∗2𝑒−2𝑖𝜔𝑡),         (155) 22 

where the last two terms are harmonic motion with frequency 2𝜔, 23 

so their average over one period of oscillation is zero, so the time 24 

average consumed power is 25 

𝑃𝑑𝑎𝑚𝑝(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

2
𝑅�̂��̂�∗ =

1

2
𝑅

𝑓𝑓∗

�̂��̂�∗
=

1

2

𝑅

𝑅2 + 𝑋2
 |𝑓|

2
     (156) 26 



Chapter 1 Introduction to Oscillations  65 
 

which is the same as the delivered power eq.154; it has to be. How 1 

could we design a system so that these powers are maximal? We 2 

have two variables X and R which we are free to choose. Since the 3 

reactance X appears only in the denominator, then it makes sense 4 

to consider X = 0. What does this mean for the constituent 5 

components of X (m and k)? Well from eq.149 we see that the 6 

condition 7 

𝜔2 = 𝑘 𝑚⁄                (157) 8 

will do the trick. The maximum power is then |𝑓|
2

2𝑅⁄ . The 9 

associated vector diagram is shown in Fig.48 (well, close to 10 

resonance so we can see all the arrows). The consequence of setting 11 

reactance to zero is that the force and velocity arrows are in phase, 12 

so that the force is doing the maximum amount of work on the 13 

oscillator, so its amplitude is largest.  14 

 
Figure 48. Zero (almost) reactance. Force (purple) and velocity (green) 
are in phase. 

Of course, this choice implies that we are able to specify the value 15 

of either m or k in our engineering design. This may not be 16 

possible; instead we may only be able to specify the size of R. 17 

Finding the maximum power while varying R, we find the 18 

condition that R = X and then the maximum power becomes 19 

|𝑓|
2

4𝑅⁄ , half what we could achieve by varying X. In this case, the 20 

vector diagram appears in Fig.49 where the phase between force 21 

and velocity is 45°. 22 
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Figure 49. Reactance and resistance magnitudes are equal. Phase 
difference between force (purple) and velocity (green) is 45°. 

In addition to these average powers, there are fluctuations in the 1 

delivered and consumed power, and the difference will not be zero, 2 

so some power is stored in the oscillating system. 3 

So let’s look at power flow over a single cycle of excitation. First 4 

let’s look at the delivered power. We take eq.152 and insert the 5 

average power for the first two terms, so we now are considering 6 

the terms with frequency 2𝜔 which we excluded from our 7 

averaging. 8 

𝑃(𝑡) = 𝑃(𝑡)̅̅ ̅̅ ̅̅ + (
1

4
𝑓�̂�𝑒2𝑖𝜔𝑡 + 𝑐𝑐)                                     9 

= 𝑃(𝑡)̅̅ ̅̅ ̅̅ +
1

2
|𝑓�̂�| cos(2𝜔𝑡 − 𝜑).        (158) 10 

Likewise, we have for the consumed power 11 

𝑃𝑑𝑎𝑚𝑝(𝑡) = 𝑃𝑑𝑎𝑚𝑝(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (
1

4
𝑅�̂�2𝑒2𝑖𝜔𝑡 + 𝑐𝑐)                       12 

=
1

4
𝑅|�̂�|2 cos(2𝜔𝑡 − 2𝜑),      (159) 13 

and as expected the delivered and consumed power have a different 14 

time variation during one cycle; the consumed power has double 15 

the phase shift of the delivered power. Why exactly is this? Well, 16 

the delivered power used is 17 

𝑓�̂� = 𝑓0𝑢0𝑒−𝑖𝜑,            (160) 18 

and the consumed power used is 19 

�̂��̂� = 𝑢0𝑒−𝑖𝜑𝑢0𝑒−𝑖𝜑 = 𝑢0
2𝑒−2𝑖𝜑,           (161) 20 
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so there’s that factor 2. Remember the phase shift 𝜑 is established 1 

by the ratio of X to R. 2 

Some understanding of power flow can be gleaned from plots of 3 

delivered and consumed powers over a single cycle. Fig.50(a) 4 

shows a plot for 𝜔 = 3.1 and b = 0.5, so X is small as is the phase 5 

𝜑. So we are close to resonance. As expected, the plot shows 6 

delivered and consumed power are about equal and close to being 7 

in-phase, and there is very little reactive power. So power is being 8 

used to fight damping. Also shown is above resonance Fig.50(b) 9 

and below resonance Fig.50(c) where delivered and reactive power 10 

are in phase, with converted power at 90° phase and relatively 11 

small. Here, a significant part of the delivered power is used in 12 

making the system oscillate at a frequency which it does not like to 13 

oscillate at, (it prefers its natural frequency). 14 
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Figure 50. Top, close to resonance, delivered (blue) and consumed 
power (red) are about equal. Bottom delivered and reactive (orange) 
power are in phase. 

 1 

1.11 Some Examples 2 

1.11.1 Mass suspended from a Rubber Band 3 

You might find the above heading somewhat amusing since we do 4 

not often see rubber springs in the world around us, or at least we 5 

do not recognize them. Note we are talking about solid rubber 6 

springs, not rubber being used as a container as in the case of air 7 

springs which are familiar to us. We know that rubber is compliant, 8 

and we make use of flexible rubber hoses, e.g., connecting parts of 9 

our vehicle cooling system, or as ‘bushes’ between steering or 10 

suspension components. Here their compliance helps them to take 11 

up the slack. Also rubber has great potential to absorb vibrations 12 

and is used with great effect in vibration analyzers; but here it is 13 

not their ‘stiffness’ which is important but their ‘visco-elastic’ 14 

properties which make them absorb. But what about real rubber 15 

springs? They are all around us; a good example is in train bogies 16 

that support carriages, see Fig.51 Such springs are able to support 17 

large loads while ensuring smooth rides. 18 
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Figure 51. Get others and permissions from Continental 

One reason we are studying rubber springs, is that their force-1 

extension graph is very different from a metal coil spring which 2 

obeys Hooke’s Law, where deflexion is proportional to force ‘Ut 3 

tension, sic vis’. This relationship is shown diagrammatically in 4 

Fig.52 where there are two clear regions of behaviour. 5 

 
Figure 52. Model of rubber band elasticity. Initial region (green) is not 
so stiff, final region (red) is very stiff. 

Say we perform an experiment where we extend a rubber band 6 

spring from zero upwards. At first the force required (or measured) 7 

increases quite slowly (green line), but at a certain point, the rate 8 

of increase shows a dramatic increase (red line). Since the gradient 9 

of the force-extension curve is the spring stiffness k then the rubber 10 

band spring has suddenly got much stiffer. How could this happen? 11 

Well, consider the molecular structure of a rubber band. Sitting on 12 

your desk it comprises many long chains of rubber molecules, all 13 

intertwined and mixed up. So when you first stretch a rubber band, 14 

you are uncoiling these chains which is relatively easy. This takes 15 

energy which requires a force as you extend. Suddenly, all the 16 

chains are uncoiled, but you keep stretching. So now you are 17 

stretching the inter-molecular bonds which are very stiff. So the 18 

stiffness dramatically increases. 19 
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We wish to model a system comprising a mass attached to a rubber 1 

band, Fig.53. The following notes are an overview, see Chapter XX 2 

for a detailed discussion. 3 

 
Figure 53. PhysLab mass rubber-band oscillator. 

To create our model, we need to set up an equation of motion which 4 

will take the form 5 

𝑚�̈� = 𝐹(𝑧) − 𝑣�̇� − 𝑚𝑔,          (163) 6 

which is familiar, but we must model the non-linear behaviour of 7 

the rubber band through the function F(z) rather than our usual 8 

linear term −𝑘𝑧. 9 

We are free to choose the details of  F(z) as long as it reproduces 10 

the behaviour shown in Fig.52. The initial green segment is linear, 11 

so for this part we choose a linear term −𝑘𝑧. For the red segment 12 

we need a function which rises rapidly with z, so we choose a term 13 

−𝑘𝑧𝑛. This will give us a function for extension of the rubber band. 14 

For compression there is no stretch of molecular bonds, so we do 15 

not need this second term. So our actual function has the form 16 

𝐹(𝑧) =  −𝑘𝑧 − 𝛼𝑘9           𝑧 < 0 17 

= −𝑘𝑧          𝑧 > 0 .               (164) 18 

Note that we have chosen n = 9, and also the z-axis is oriented 19 

upwards, so, loading the rubber band with a mass, produces a 20 

negative z. 21 

This function is shown in Fig.54 together with the equivalent 22 

potential 𝑉(𝑧). Both graphs show the asymmetry of the model we 23 

have set up. When the rubber band is extended, then it shows non-24 

linear behaviour and when it is compressed, it behaves like a 25 

familiar metal spring. Let’s look for the equilibrium position of the 26 
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Figure 54. Left shows non-linear 
force-extension model, right 
the equivalent potential. 

 

mass-rubber band oscillator in these graphs; this is the value of z 1 

where the force is zero and the potential has a minimum and it turns 2 

out to be around -0.684m for this example. Now let’s consider 3 

oscillations around this point; we know that they will be close to 4 

harmonic. Fig.55 shows the position and velocity traces; we see 5 

sine wave traces and a circular orbit; we have harmonic motion! 6 

 
Figure 55. Left position and time 
traces, right trajectory on the 
phase plane. These look like they 
come from a linear oscillator. 

 

Now let’s look at a trajectory away from the  z = 0.5 and we see 7 

completely different behaviour. The phase plane is not circular, 8 

which tells us we do not have harmonic motion. This is confirmed 9 

by the 𝑧(𝑡) graph, which is clearly non-sinusoidal, Fig.56. Let’s 10 

think about this. 11 

This plot tells us a lot. The tops look rather sinusoidal, but the 12 

bottoms are narrowed, peaked. This reflects the non-linearity at 13 

work; near the top we have compression, and the force is linear, 14 

near the bottom we have extension, and the force is non-linear. 15 
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Figure 56. Time traces and 
trajectory in a non-linear region. 

 

The phase plane also betrays this distinction; at the right we have a 1 

more ‘circular’ curve while at the left it is squished with a larger 2 

vertical component. 3 

Now let’s estimate the frequency of small-amplitude oscillations 4 

near the equilibrium point, using eq.54 and with 5 

𝑑𝐹(𝑧) 𝑑𝑧 = −𝑘 − 9𝛼𝑧𝐸𝑞𝑢
8⁄  using the value 𝑧𝐸𝑞𝑢 =  −0.684 we 6 

find this gives us a period of T = 0.86 sec. 7 

We can numerically compute the periods of large-amplitude 8 

oscillations using the ‘energy method’, shown in section?? Here is 9 

a table of numerical results 10 

initZ T 

1.5 1.07 

1.0 1.07 

0.5 1.06 

0.0 1.04 

-0.68 0.88 
There are a number of interesting things here. First, we see that the 11 

value for -0.68 has a period which agrees with our approximation 12 

for small-amplitude oscillations, 0.86 sec. Then for large initial 13 

displacements, the period is pretty constant at 2.07 sec, and is 14 

approximately half of the period of a quadratic potential, 𝑇 =15 

2𝜋√𝑚 𝑘⁄  = 2.00 sec. So we have support for our assertion in 16 

section 1.5.4. 17 

There is also another important point here concerning the 18 

amplitude of oscillations, as defined by half the value of maximum 19 

and minimum displacements. This actually has little relevance to 20 

such a non-linear oscillator, especially when we are using the 21 

energy approach to estimate the periods. The values in Table.1 used 22 

the initial displacement as the independent variable to characterize 23 
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an oscillation trajectory. This has much more physical sense here 1 

than the formal amplitude since it is directly related to the system 2 

energy. 3 

1.11.2 A Piezoelectric Energy Harvester 4 

As we potentially move towards the ‘Internet of Things’ consisting 5 

of small remote wireless-connected devices such as light switches, 6 

thermometers and intrusion sensors, a problem emerges, how to 7 

power them? A typical home will probably contain a hundred or so 8 

devices, so to power them by batteries would become inconvenient. 9 

We need an alternative way of localized power. Localized power 10 

is in itself interesting since it may lead to electrical installation 11 

savings. If all of our light switches communicated by radio signals 12 

with a central controller, then there would be no need for hundreds 13 

of metres of copper wire connected to those switches. 14 

One interesting device currently in research and development uses 15 

a piezoelectric strip, a thin semiconductor sandwich which 16 

produces several volts of output when the end moves by a few mm 17 

and the strip bends. As shown in Fig.57 one end of the strip is fixed 18 

to some structure, and the other end supports a mass which is free 19 

to move. 20 

 
Figure 57. Snapshots of oscillations of a piezoelectric energy 
harvester. 

 21 

The strip has a certain stiffness, so our system is like a mass on a 22 

spring with one end of the spring forced. Yep, this is forced 23 

harmonic motion! The system will have a natural frequency of 24 

oscillation, so when the excitation frequency is close to this, we 25 

expect resonance; the mass will have a large oscillation amplitude. 26 

The strip will then have a large amount of bending and produce a 27 

large voltage. 28 

A typical research laboratory setup is shown in Fig.58 which we 29 

have simulated in PhysLab. An electromagnetic vibrator drives one 30 

end of the strip; some electronics ensures that the acceleration of 31 
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the end always has an amplitude 1g. The mass is free to oscillate, 1 

and the voltage generated is measured. 2 

 
Figure 58. Research setup to investigate a PIE. 

How do we set up the equation of motion for this system which 3 

will tell us how the output voltage (and therefore delivered power) 4 

varies with time? We must start with the cause of the voltage which 5 

comes from the bending of the strip, and the simplest model of this 6 

bending is a spring, where the restoring force is proportional to the 7 

displacement of the mass. We must also include damping, and we 8 

have stated that the amplitude of the excitation is 1g. This leads to 9 

the equation of motion 10 

�̈� = −
𝑘

𝑚
𝑧 −

𝑏

𝑚
�̇� + 𝑔 cos 𝜔𝑡.               (165) 11 

From eq.129 we know that the amplitude of the steady-state 12 

response to the forcing is just 13 

𝐴(𝜔) =
𝑔

√(𝜔0
2 − 𝜔2)2 + 4𝛽2𝜔2

,          (166) 14 

where 𝛽 = 𝑏 2𝑚⁄ . This is a straightforward application of our 15 

theory. Let’s discuss an actual example of a possible research 16 

project to design an energy harvester. 17 

 18 

 
Example ?? The frequencies of ambient vibrations such as household 
equipment, cars, buildings and humans are usually less than 100Hz. 
We wish to design a system with a natural frequency in this range. 
Given the constraints of fabricating a realistic device, we choose a 
mass 𝑚 = 9.62 × 10−4kg and stiffness 𝑘 = 25.8 N/m. Experiments 
give a damping coefficient 𝑏 = 6.3× 10−3 kg/s. With these values, 

you can confirm that the resonant frequency is 𝑓 = (1 2𝜋⁄ )√𝑘 𝑚⁄  
which is 26Hz. So far so good. 
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From eq.?? we find the amplitude of oscillation when we excite at 
resonance is ??. For our device, experiment shows that the generated 
voltage is related to amplitude by a factor 156.25, so the voltage 
produced is ?? and if connected to a 50kOhm resistor produces a 
power ?? While this may seem low, it is enough to power a small 
sensor and transmitter. 
 
But we also have to consider the frequency response curve of this 
device, which we can plot from eq?? We can see this is quite sharp 
[something about bandwidth here]. So this is a limitation; our device 
is so accurately tuned to ??Hz, that it will not respond to (and harvest) 
other frequencies present in the ambient vibration range of up to 
100Hz. We shall address this in the next section. 
 

 1 

1.11.3 A Multi-Piezoelectric Energy Harvester 2 

We know that ambient vibrations have frequencies up to 100Hz, 3 

but our (motivated) design presented in Example?? had a relatively 4 

small bandwidth and was therefore able to extract just a small 5 

proportion of the power available. How can we improve on this? 6 

One obvious approach (which is being researched) is to design a 7 

system with multiple strips, with different resonant frequencies 8 

which together cover the range up to 100Hz. 9 

We can easily do this by changing the mass attached to each strip, 10 

see Fig.59 So our exemplar device is shown at the bottom with a 11 

resonant frequency of ??. Moving upwards, the mass is decreased 12 

so the resonant frequency increases. You can see how, with careful 13 

choice of masses, we can design a system which might be able to 14 

get from ??Hz to 100Hz. 15 

 
Figure 5. Multi-PIE VEH with range of resonant frequencies; highest 
(top) to lowest (bottom). 

Let’s look at the results of such a system design and then explore 16 

how we have designed it. Figure.60 shows the frequency response 17 

of a four-strip device where the amplitudes of each strip are plotted; 18 

vertical dashed lines show the designed resonant frequencies.  19 
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Our single PIE device is shown by the blue (leftmost) curve. Let’s 1 

compare the single and multi-PIE devices by looking at the 2 

frequencies which yield an amplitude of 4mm. The single device 3 

has a response range of  around 25-27 Hz and the multi device has 4 

a response range of around 25 – 32Hz. So there is a dramatic 5 

improvement, so we have an engineering success! 6 

 
Figure 60. Response of a multi-PIE VEH showing individual response 
curves. 

Now let us think about this physics expressed in Fig.60. Suppose 7 

we have our four devices, and we excited them together starting 8 

with a frequency of 20 Hz and steadily increased this up to say 9 

40Hz. What would we see if we directly observed the apparatus? 10 

Well, we follow the plots. At 20Hz most elements do not vibrate a 11 

lot, but when we hit 26Hz the first element is really vibrating. 12 

Moving upwards in frequency this element vibrates less, then the 13 

second starts to increase and dominates the system movement at 14 

28Hz. Moving upwards the second element starts to decrease and 15 

the third takes on the baton and dominates at 30Hz. You get the 16 

idea; each element has its own resonant frequency and so extracts 17 

energy from the ambient energy where it can. 18 

In terms of the mathematics and ODE formulation, there is little to 19 

add here; each element will obey its own eq.165 and eq.166. 20 

1.11.4 The ‘Gravity Tube’ 21 

This is a hypothetical experiment where a mass is dropped into a 22 

‘gravity tube’ which has two halves; in the top half gravity is 23 
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pointing down (as usual) but in the bottom half gravity is pointing 1 

upwards. This is sketched in Fig.61 where a possible approximate 2 

piece of physical apparatus is shown. 3 

 
Figure 61. Left shows the 
hypothetical tube as found in 
PhysLab, right shows a close 
implementation as a ball on a 
track. 

 

The magnitude of both gravity vectors is identical, and we assume 4 

that there is no friction. There is clearly a discontinuity  where the 5 

tubes meet. The apparatus consists of a ball rolling along a track 6 

which rises linearly with displacement on both sides of 𝑧 = 0; the 7 

tracks are joined smoothly by a short, curved segment to remove 8 

any discontinuous join. 9 

To understand the dynamics of this system, we do not look for an 10 

equation of motion expressed as an ODE due to the discontinuity; 11 

in fact, we don’t have to, since we can apply the equations of 12 

kinematics directly. To find the time t taken for the mass to fall 13 

from its initial displacement to the boundary at 𝑧 = 0 we have 14 

𝑧0 =
1

2
𝑔𝑡2     ⇒      𝑡 = √

2𝑧0

𝑔
.         (167) 15 

By symmetry, the time taken in the lower half from the boundary 16 

to the rest position is the same, therefore the period of oscillation 17 

(from starting point back up to starting point) is just 18 

𝑇 = 4√
2𝑧0

𝑔
 .           (168) 19 
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For a typical experiment with a starting displacement of 2m, with 1 

the usual value of gravity, we find a period of 2.55 seconds. 2 

The importance of studying the gravity tube is that it provides us 3 

with an oscillator which is not harmonic; as you can see from eq.?? 4 

the period depends on the ‘amplitude’ of oscillations, here the 5 

starting value 𝑧0. If we solve eq.168 as a function of time for the 6 

position of the mass, in the top half, we have 7 

𝑧(𝑡) = 𝑧0 −
1

2
𝑔𝑡2,            (169) 8 

which describes a parabola. So we expect the oscillation time-trace 9 

to be a series of connected parabola, see Fig.62. From eq.169 we 10 

have an expression for the velocity 11 

𝑣(𝑡) = −𝑔𝑡,                 𝑣(0) = 0,              (𝑥𝑥) 12 

where the velocity time-trace is a series of  straight lines. Eqs.169 13 

and 170 are clearly very different from the equations of simple 14 

harmonic motion which have the form 𝑧(𝑡) = 𝐴 sin(2𝜋𝑡 𝑇⁄ ) and 15 

𝑣(𝑡) = −(2𝜋 𝑇⁄ ) cos(2𝜋𝑡 𝑇⁄ ). 16 

 
Figure 62. Time traces for the Gravity Tube oscillator. 

The first (negative) velocity peak occurs at time 𝑡 = √2𝑧0 𝑔⁄ . We 17 

have rescaled velocity 𝑣′ = 𝑣 √𝑔⁄ , to make the phase plane more 18 

‘circular’, so the value of this first velocity peak is 19 

𝑣𝑝𝑒𝑎𝑘
′ =

−𝑔𝑡

√𝑔
= −√𝑔√

2𝑧0

𝑔
= −√2𝑧0.               (171) 20 

We note discontinuities in the velocity trace which are harder to 21 

spot in the displacement trace, but they are very visible in the phase 22 
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plane, Fig.63 This shows smooth changes in z and v except at 𝑧 =1 

0 where the displacement changes in sign. Changes in the sign of 2 

the velocity occur at displacement extrema (top and bottom of the 3 

combined tube), and these are continuous. 4 

 
Figure 63. Phase-plane trajectory for the Gravity Tube. 

In the above analysis we have taken the initial conditions as (i) an 5 

initial displacement, (ii) zero velocity. Two ICs are required since 6 

this is a 2nd-order dynamical system. Here we look at the 7 

complementary ICs where we have zero initial displacement but an 8 

initial velocity 𝑣𝑖𝑛𝑖𝑡, see Fig.64 9 

 
Figure 64. 

To understand this situation, we use the initial velocity to calculate 10 

the height of the mass when it has stopped, then we have the 11 

previous situation. Using energies 12 

1

2
𝑚𝑣𝑖𝑛𝑖𝑡

2 = 𝑚𝑔𝑧      ⇒         𝑧 =
𝑣𝑖𝑛𝑖𝑡

2

2𝑔
 ,            (𝑥𝑥) 13 

which, using eq.168 gives us 14 
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𝑇 = 4
𝑣𝑖𝑛𝑖𝑡

𝑔
,                   (𝑥𝑥) 1 

so we find the period is proportional to the initial velocity. This is 2 

a nice clean result. 3 


