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Chapter X 
Double Well Oscillator 

X.1 A Brief Introduction 
Here we are going to look at a somewhat strange, almost 

hypothetical system where the linear component of the restoring 

force is positive, i.e., it is not restoring. The nonlinear term is pure 

cubic which allows analytical solutions in many cases, e.g., for the 

bifurcation diagram, and for small-amplitude oscillations. It is 

based on the Duffing equation, well studied and reported in the 

literature. Moreover, it is an archetypal  system, since all systems 

where the nonlinearity is odd can be very accurately approximated 

by the double-well through a process called cubification, though 

this is advanced material, beyond our current needs. 

We can visualize the system as a mass tethered between two 

strange, hypothetical springs, as shown in Fig.1, where we also 

depict the potential curve where a small particle is shown 

traversing the curve. 

 
Figure 1. Mass-spring oscillator with potential curve showing two equilibrium positions. 
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X.2 Equations of Motion 

X.2.1 Forces and Fixed points 
We start with the stated equation of motion, not related to any 

concrete physical system, 

𝑚𝑥̈ = 𝑘𝑥 − 𝑥3    (1) 

where the force (right-hand-side) is sketched in Fig.2. The fixed 

points of the system (force is zero) are shown as yellow dots, and 

the gradient of the force is indicated. Clearly we have an unstable 

equilibrium at 𝑥 = 0 and stable equilibria at positions 

𝑥𝑒𝑞𝑢 = ±√𝑘           (2) 

 
Figure 2. Force extension curve for our system showing a central unstable 
equilibrium (as deduced from the gradients shown) and two stable equilibria. 

 

X.2.2 Frequencies of oscillations. 
It is straightforward to obtain the frequencies of oscillation around 

the fixed points, at least for small-amplitude oscillations. We can 

proceed in two ways. First we can use the idea that the frequency 

of harmonic oscillations is given by 

𝜔 = √
𝑘′

𝑚
                 (3) 

where 𝑘′ is the effective stiffness of the spring near the fixed point. 

This is of course given by 

𝑘′ = −
𝑑𝐹(𝑥)

𝑑𝑥
               (4) 

which for 𝐹(𝑥) = 𝑘𝑥 − 𝑥3 with 𝑥𝑒𝑞𝑢 = √𝑘 results in 
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𝜔 = √
2𝑘

𝑚
                (5) 

which corresponds to the hypothetical-physical arrangement 

depicted above. 

A second approach involves expanding the solution 𝑥(𝑡) around 

the fixed point 𝑥𝑒𝑞𝑢 

𝑥(𝑡) = 𝑥𝑒𝑞𝑢 + 𝜀(𝑡)               (6) 

where we assume the second term is relatively small. Substituting 

into eq.(1) we have 

𝑚𝜀̈ = 𝑘𝜀 + 𝑘𝑥𝑒𝑞𝑢 − (𝑥𝑒𝑞𝑢 + 𝜀)
3

    (7) 

Expanding, and keeping only the lowest order term in 𝜀 we end up 

with 

𝑚𝜀̈ = −2𝑘𝜀    (8) 

from which eq.(5) follows. 

X.2.3 The Bifurcation Equation 
Here we are interested in investigating how the equilibrium 

solutions ±𝑥𝑒𝑞𝑢 and the frequencies of small-amplitude 

oscillations around these, vary with a principal system parameter 

which plays the role of the bifurcation parameter. The available 

parameter is of course k. The required equation is eq.(2) which is 

shown in Fig.3. Those familiar with bifurcation theory will 

recognize this as a super-critical pitchfork bifurcation, with a 

critical point 𝑘 = 0. 

The frequencies above the critical point are given by eq.(5). Below 

the critical point the dynamics become 

𝑚𝑥̈ =  −𝑘𝑥 − 𝑥3|𝑥=0   (9) 

and using eq.(4) about 𝑥 = 0 we find the frequencies below the 

critical point 

𝜔 = √
𝑘

𝑚
                (10) 
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Plots of the equilibrium values and frequencies as a function of k 

over a range of k from 0 to 2 are shown in Fig.4 together with 

experimental results. 

  
Figure 3. Theoretical equilibrium positions (left) and periods (right) as a function of k together with some 
experimental results (circles). 

 

X.5 The Potential Hill 

X.5.1 A short amble around a Potential Landscape 
So far, we have been considering behaviour near the equilibrium 

points, and have focussed on small-amplitude oscillations. 

Working with the potential hill helps us to understand large 

amplitude oscillations. We think of our mass as moving in a field 

described by the potential 𝑉(𝑥) which is related to the force on the 

mass, 

𝐹(𝑥) = −
𝑑𝑉(𝑥)

𝑑𝑥
            (11) 

Before we set about deriving the expression for 𝑉(𝑥) let’s take a 

look at its appearance, Fig.4, where we have related it to the force 

expression. The red dashed lines indicate the fixed point where the 

force is zero, these correspond to the lowest points in the potential, 

at the bottom of its wells. A particle placed here would stay put, 

since it cannot autonomously roll uphill. 
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Figure 4. Typical potential hill (bottom) with corresponding force-extension 
curve (top) for the parameters indicated. 

 

But the potential plot also gives us some additional information. If 

a particle started at x = -2, then it would roll down the left well and 

back up the other side until it reaches its starting height. Then it 

would be at x = 0, and would roll back down the left well, and so 

continue oscillating. So a particle of initial potential = 1 would just 

remain bounded in the left well, and any particle of lower potential 

would remain here too. While the trajectories of these bound 

particles will in general not be harmonic, we expect many to be 

quite close. 

On the other hand particles with initial potential above 1.0 would 

traverse both wells, and their trajectories will certainly not be 

harmonic. 

Let’s have a look at some bound solutions, Fig.5, for three initial 

starting potentials (and therefore three different starting 

displacements). 
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Figure 5. System solutions for the initial conditions shown on the potential hill. 

Progressing downwards we see two different changes in the 

trajectories. First, they are increasing in frequency and second, they 

are changing in shape. Let’s first consider frequency. The period 

of the bottom plot close to the bottom of the potential well is around 

2 seconds. The corresponding frequency (for k = 2N/m, m = 0.4053 

kg) agrees with eq. (5). More on this later. As we move up the series 

the period increases. We can sort of understand this, since the 

velocity at the bottom of the well will be proportional √𝑉𝑠𝑡𝑎𝑟𝑡 

where 𝑉𝑠𝑡𝑎𝑟𝑡 is the particle starting potential. The distance travelled 

increases faster than linear, so we expect the period to increase. 

It's also straightforward to get a qualitative understanding of the 

trajectory shape change. Near the bottom of the well the particle 

spends about the same time on either side of the equilibrium, its 

trajectory is near symmetric and probably harmonic. Near the top 

of the well the potential is more asymmetric, the particle spends 

more time on the left which is reflected in the larger time with small 

x-values, leading to the “cnoidal” shape. 

These ideas are confirmed by the velocity-time plot for the 

oscillator, Fig.6 shows an example for an initial displacement of 

1.99m which puts the oscillator very close to the energy of the 

potential hump. You can clearly see regions where the velocity is 

small, this lengthens the period and distorts the shape. 

Figure 6 Trajectory close to potential hump. 
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X.5.2 The Form of the Potential 
Now it’s time to derive the form of our potential using eq.(11). 

Performing the integration we have 

𝑉(𝑥) = − ∫ (𝑘𝑥 − 𝑥3)
𝑥

0

𝑑𝑥             (12) 

= −
1

2
𝑘𝑥2 +

1

4
𝑥4 + 𝑐𝑠𝑡               (13) 

where we are free to choose the constant of integration. We choose 

this to be 1

4
𝑘2 so the zero of potential is located at the bottom of the 

wells. This leads to a simple expression for our potential which has 

been used in the above plots 

𝑉(𝑥) =
1

4
(𝑥2 − 𝑘)2               (14) 

It is straightforward to deduce that the well bottoms are located at 

±√𝑘 and the height of the potential hill is of course 
1

4
𝑘2. A typical 

plot for 𝑘 = 2 is shown in Fig.7 

 
Figure 7. Double Potential Well. 

 

While we are busy with the maths, let’s try to model the potential 

around one well, in particular, let’s fit a quadratic curve to the 

bottom of the well. That’s useful since it gives us another way to 

calculate the oscillation frequency near the equilibrium points. The 

idea is shown in Fig.8 where we plot the full potential 𝑉(𝑥) and an 

approximating quadratic potential 𝑉(2)(𝑥) around the equilibrium 

𝑥 = √𝑘. 
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Figure 8. Full potential 𝑉(𝑥) and quadratic approximation 𝑉(2)(𝑥) around the 
rightmost equilibrium point. Dotted curve shows the approximation. 

We construct the Taylor expansion 

𝑉(2)(𝑥) = 𝑉(𝑎) +  𝑉′(𝑎)(𝑥 − 𝑎) +  
1

2
𝑉′′(𝑎)(𝑥 − 𝑎)2 + ⋯ 

with 𝑎 = √𝑘. It is easy to show that 𝑉(𝑎) = 0 and 𝑉′(𝑎) = 0, so 

we are left with the second derivative term. It follows that 

𝑉(2)(𝑥) = 𝑘(𝑥 − √𝑘)
2

           (15) 

which is the red dashed curve plotted above. Now we can use eq.(4) 

to find the oscillation frequency 

𝐹(𝑥) = −
𝑑𝑉(2)(𝑥)

𝑑𝑥
= 2𝑘(𝑥 − √𝑘)          (16𝑎) 

𝑘′ = −
𝑑𝐹(𝑥)

𝑑𝑥
= 2𝑘                           (16𝑏) 

which agrees with our previous result. 

X.6 Large Amplitude Solutions 
For a nonlinear system it is the large amplitude solutions which are 

of particular interest. Unlike linear systems, where the amplitude 

of oscillation is defined by the initial conditions, nonlinear systems 

behave completely differently. Here the large amplitude solutions 

are defined by the system itself, in other words the system 

parameters. 
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There are several available mathematical approaches, here we 

apply a quite recent approach, the energy balance method. 

X.6.2 Global Solutions 
Here we consider solutions where the oscillations traverse both 

potential wells shown in Fig.9.  

 
Figure 9. [needs revising] 

 

Starting from the equation of motion (slightly re-ordered), 

𝑚𝑥̈ − 𝑘𝑥 + 𝑥3            (17) 

we can obtain an expression for the total energy of the system 

1

2
𝑚𝑥̇2 −

1

2
𝑘𝑥2 +

1

4
𝑥4 = 𝑐𝑠𝑡            (18) 

now take two points on the trajectory, first at its beginning where 

we have 𝑥(0) = 𝐴 and the second at a general point. The total 

energy at these points is the same, so we have 

1

2
𝑚𝑥̇2 −

1

2
𝑘𝑥2 +

1

4
𝑥4 =  −

1

2
𝑘𝐴2 +

1

4
𝐴4          (19) 

Now we take a trial function 

𝑥 = 𝐴 cos 𝜔𝑡                    (20) 

and substituting into eq.(19) we find after some cleanup 

𝑚𝜔2 sin2 𝜔𝑡 − 𝑘 cos2 𝜔𝑡 +
1

2
𝐴2 cos4 𝜔𝑡 = −𝑘 +

1

2
𝐴2           (21) 

Now we choose a point on the trajectory and assert that the energies 

are equal at this point. They cannot be equal at all points along the 

trajectory unless our trial function eq.(20) is the correct solution. 

To avoid losing any terms in eq.(21) we choose 𝜔𝑡 = 𝜋 4⁄  which 

is 1/8th the way along the trajectory. With some cleaning eq.(21) 

becomes 
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𝑚𝜔2 =
3

4
𝐴2 − 𝑘                       (22) 

and so we find the relationship between frequency and amplitude 

of the oscillation 

𝜔 =
1

2
√

3𝐴2

𝑚
−

4𝑘

𝑚
                   (23) 

There is of course a limitation, we must have 𝐴2 > (4 3⁄ )𝑘, so the 

amplitude must be sufficiently large! 

Despite the simplicity of this approach, the results are rather 

impressive, Fig.10 shows experimental results for m=0.4053 kg 

and k=1 N/m. The blue line follows the above analysis, the red line 

is experimental, and follows our current research into how to 

optimally choose the co-location angle. 

 
Figure 10. Period versus initial displacement according to the Energy Balance 
method (blue line) with some simulation data (circles). 

 

A small catalogue of solutions is reproduced in Fig.11. 
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Figure 11. Catalogue of solutions for various potentials shown. 

Starting with the amplitude 2 solution, the inter-valley rise is very 

small, so the mass starting from the left will pick up speed which 

will remain more or less constant for most of its cycle. You can see 

this from the x-t graph which comprises linear segments (constant 

velocity) between rounded ends. As the amplitude is reduced, the 

effect of the rise becomes more dominant and there are significant 

times when the velocity is small. Finally the solution with 

amplitude 1.40 remains confined to a valley. 

X.6.3 Local Solutions 
Here we are interested in large amplitude solutions which are 

confined to a potential well described by variable 𝑦 as shown in 

Fig.12 for 𝑘 = 2. 

 
Figure 12. Diagram to aid in establishing large-amplitude solutions within a 
potential well 
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Our task is to establish a suitable potential function 𝑉(𝑦). There 

are two constraints on the associated force: First, to agree with the 

small amplitude approximation, the gradient of the force around 

the equilibrium location 𝑦 = 0 ( 𝑥 = √𝑘 ) must be −2𝑘. Second, 

the force at 𝑦 = −√𝑘 must be 0. This leads to the following force 

and potential 

𝐹(𝑦) =  −2𝑘𝑦 + 2𝑦3           (24) 

𝑉(𝑦) = 𝑘𝑦2 −
1

2
𝑦4                (25) 

Applying the above energy balance method results in the 

following frequency-amplitude relationship 

𝜔 = √
2

𝑚
√

4𝑘

𝑚
−

𝐴2

𝑚
                (26) 

Again the results are rather impressive, Fig.13 shows experimental 

results for m=0.4053 kg and k=1 N/m. 

 
Figure 13. Large amplitude solutions within a potential well by the Energy 
Balance method (blue line) with some simulation results (circles). 

It’s interesting to compare Figs. 10 and 13 which show the 

amplitude having opposite effects on the period. Within a well 

period increases with amplitude, as we have already said, this is 

due to the average oscillator velocity reducing with amplitude. 

When the oscillation is across both wells, the period reduces with 

amplitude. We suggest this is due to the hump having smaller 

influence over large amplitude cycles. 
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X.7 Unfolding the Bifurcation curve 
Many physical systems can be modelled by the introduction of a 

constant offset to the force, the equation of motion now reads 

𝑚𝑥̈ = 𝑘𝑥 − 𝑥3 + 𝛿    (27) 

The equilibrium solutions are obtained from 

𝑘𝑥 − 𝑥3 + 𝛿 = 0    (28) 

for which exact analytical solutions are available. You may think 

that periods of small-amplitude oscillations are the same without 

the offset, since they depend on the derivative of the expression for 

the force. But this is incorrect, since the periods must be evaluated 

around the equilibrium positions of the oscillator, and these depend 

on 𝛿. Fig 14 illustrates this for two values of 𝛿 where k = 2. The 

potential is now 

𝑉(𝑥) =
1

4
(𝑥2 − 𝑘)2 − 𝛿𝑥       (29) 

 
Figure 14. Potential hill with and without unfolding. 

It’s straightforward to derive an expression for the frequencies as a 

function of 𝑥𝐸𝑞𝑢 

𝜔2 = −
(𝑘 − 3𝑥𝐸𝑞𝑢)

𝑚
               (30) 

where 𝑥𝐸𝑞𝑢 can be obtained by solving eq.28 

The unfolded bifurcation curve obtained from eq.(28) together for 

some experimental solutions for k = 2 N/m and 𝛿 = 0.1𝑁 are 

shown in Fig.14.  
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Figure 14. Unfolded bifurcation curve due to parameter 𝛿 = 0.1 

Comparing this with Fig.3 we see the lower branch has become 

‘detached’ from the upper branch and there is a range of 

equilibrium values which the system cannot produce. 

A typical investigation of the lower branch would start by obtaining 

a solution for k = 3, then slowly reducing k to trace out the branch. 

You would find that the equilibrium value would continually 

reduce until the point 𝑘 = √27𝛿2/4
3

 at which point the solution 

would jump to the upper branch. This is detailed in Chapter.XX. 

The critical value of k is obtained from analysis of the cubic 

equation. Results of an investigation of this jump are shown in 

Fig.15 

 
Figure 15. Demonstration of the jump phenomena near the critical value of k. 
Both solutions start with the same initial conditions, -0.5. As time evolves, one 
solution remains on the lower branch while the second jumps to the upper 
branch. 
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Two experiments were performed for identical initial conditions x 

= -0.5 and bracket the critical k. The jump for k = 0.4 is clearly 

visible. 

We can also present theoretical curves and experimental results in 

additional ways, which may lead to insights. Fig.16 shows the 

period of small-amplitude oscillations as the bifurcation parameter 

is varied. The peak in the upper branch is a consequence of the 

different behaviour above and below k = 0, below we have (for the 

unfolded bifurcation) 𝜔2 = 𝑘/𝑚 while above we have 𝜔2 =

2𝑘/𝑚. 

 
Figure 16. Theoretical and simulation results for period as a function of k for 
both upper curve (blue) and lower curve (red). 

The lower branch shows interesting behaviour, the period rises to 

infinity as k approaches its critical value [needs explaining]. So the 

oscillator, when on the lower branch is able to show a large range 

of periods. This may be useful to engineers who use such an 

oscillator to harvest energy from environmental vibrations, since 

often the range of periods is imprecisely known, or may show a 

large bandwidth. The lower branch could be a useful place to 

explore large-bandwidth harvesters. 

Finally we consider a plot of period against equilibrium position, 

Fig.17. Again, taking an engineer’s perspective, we would be 

interested in devices with fairly small equilibrium positions, since 

these define the physical size of the device. There are clearly 

regions of both upper and lower branches where reasonably-sized 
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devices showing a useful bandwidth could be constructed. [Revisit 

this, perhaps look at power output as f(equilib,T)?]. 

 
Figure 17. Plots of period against equilibrium positions for the upper and 
lower branches. 

 

It is interesting to look at a plot of how period depends on 𝛿 and 

we must do this for both wells. First, we must identify the 

correspondence between wells and branches of the bifurcation 

diagram, see Fig.18. 

 
Figure 18 

As we proceed along the upper branch, increasing 𝛿, we note that 

𝑥𝐸𝑞𝑢 is increasing, so that the frequency from eq.?? is increasing,  

hence the period will reduce. On the lower branch 𝑥𝐸𝑞𝑢 decreases, 

the frequency will reduce and the period increase. This is visible in 

Fig.19. 
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Figure 19. 

 


