
Odometry 1

Worksheet 2
Webots Robot Odometry - 1

Purpose.

To investigate aspects of odometry using a simulated ePuck
robot in Webots.

1. Initialization.

(a) Download and unzip the Webots assets folder.

(b) Fire up webots and select File > Open World. Navigate to
the worlds folder and select CBP_ePuck_Odometry_1.wbt. On
the top left panel, expand the node with this name and left-click
on the controller tab. The diagram on the right should help.

(c) In the box underneath, hit Select… which will bring up a list
of the available controllers. Choose CBP_ePuck_Odometry_1.c
Then hit Edit and the c-code for this controller should appear
on the right.

2. Investigating the Controller _Odometry_1
The controller drives the robot in a straight line for the desired

distance 0.5m and completes this in 10.0 seconds, so it’s speed

is 0.05 m/s. The code calculates the perceived distance moved

by the wheels, and also logs the gps distance which is the actual

distance moved. We expect the perceived and actual distances

to be different, due to wheel slippage etc. The code creates an

Octave file which can be used to plot the trajectory.

(a) Check the code. Look for the function which returns the left

wheel angle, and the line that converts this to the perceived

distance. Check out the condition which stops the robot. Does

this use actual or perceived distance?

Learning Outcome 2

Book Chapter 1

Robotics 2

(b) Hit the compile button . You will be asked to reset or

reload the world. Choose Reset.

(c) Run the simulation . If you are working on your own

machine, you may need to disable your anti-virus software.

When the robot has stopped, hit pause and then reset the

robot to its initial location . The robot should draw you a

nice straight line.

(d) Navigate to the controllers folder and into your controller

sub-folder. You will see an Octave file Robot.m Open this with

Octave and run it (find the file in Octave’s top-left window, right

click on it and select Run).

(e) You will see a plot of distance (m) against time (secs). The

red line is the perceived distance, and the blue is the actual

distance. You will see the perceived is larger than the actual.

What does this tell you?

(f) Estimate the % error in the final position. You can get these

on the Octave command line by typing gpsX(end) and

perX(end).

(g) Plan a mini-investigation of what changes the error. Here are

some suggestions.

(i) Keep the speed constant but change the distance the robot

travels. N.B. Your code may exceed the max motor velocities,

Webots will tell you in its console.

(ii) Keep the distance constant but change the speed.

Can you observe any patterns? Can you explain these?

2. ePuck with Simulated Encoders
Here we shall simulate encoders on the ePuck. The ePuck
doesn’t have encoders since it uses stepper motors, which we
shall see later. So why simulate? Well, it gives us another way
to understand encoders, in addition to the Parallax hardware.

(a) Let’s start with some basic calculations. Parameters for the
ePuck are given in the box below. Use these to calculate:

Odometry 3

(i) The distance moved (in mm) for one step
(ii) The number of steps needed to travel a distance 250 mm.

(b) Open the world CBP_ePuck_Odometry_10.wbt and make
sure that the controller CBP_ePuck_Odometry_10a.c is
selected and open in the editor window. Look for the code
which does the following:

(i) Sets the desired distance to 250mm. You will see this as 0.25
(in metres).
(ii) Calculates the number of steps nL needed.
(iii) Sets values for omegaL and omegaR. These are equal. Why?
(iv) Simulates the encoder ISR returning a value of count.

(c) Clear the console (right click), compile the controller and
run. Some useful data is printed on the console.

(i) How many steps have the motors taken? Does this agree
with your calculation in (a)?
(ii) How far does the robot think it has travelled?
(iii) How far has it actually travelled?

(d) So the robot has not gone far enough. We need to get it to
take more steps and to correct its speed. Here’s how to find the
new value for nL, where I have used my perceived and actual
distances.

nL = (int)((float)nL*0.249882/0.242587);

Here’s how to correct the motor speeds

 omegaL = omegaL*0.249882/0.242587;
 omegaR = omegaL;

Make sure you understand how these calculations work. Now
insert these lines of code at the point given by the comments
and run the robot again. Check the actual distance and the new
number of steps.

ePuck parameters

wheel radius = 20.5mm

axle length = 53.0 mm

steps / rev = 1000

Robotics 4

(e) Navigate to the subfolder containing your controller and
open up the Octave file Robot.m. Run this and it will give you a
nice plot of perceived and actual distance. Note that the actual
distance is correct now, and that this is achieved in the desired
time of 25 secs.

