
Robot Vision 1

Worksheet 11
Camera Distance Calibration

Purpose:

There is a relationship between object width returned by the
Pixy API and the distance of the object from the camera. If we
know this, then we can deduce the object distance from the
measurement of width.

We know from the theory in Chapter 5, that the distance to an
object is proportional to the inverse of the object width. This is
expressed as the straight line

𝑑𝑖𝑠𝑡 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (
1

𝑤𝑖𝑑𝑡ℎ
) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

where two parameters, the gradient and the intercept of the
line need to be found.

We perform an experiment to get distance-width data, then fit
a straight line approximately by hand. Then we call a non-linear
regression script to find the optimal values of gradient and
intercept from our data. This enables us to create a function like
this, in code.

float getDistanceFromObject(uint16_t width){

 float dist;

 dist = gradient/(float)width + intercept;

 return dist;

}

1. Collecting Data and Manual line fitting

(a) Find a suitably large flat area (such as the arena) for the
robot to move on. Then create a grid of lines of suitable spacing
(you can choose) on some sheets paper sellotaped together.
Here’s a plan diagram of what to do. The robot is shown, and

Book Chapter 5

Learning Outcome 1,4

Nature of Computing 2

the red object which you will move. The largest distance should
be the largest distance you will use the camera in future
activities. I suggest at least 400 mm.

(b) Run the sketch CBP_2403_R_Dist_Measure which will
report the width of the image of the red object. Move the
object at on your grid and record a table of physical distances
(mm) and image widths (pixels). Make up a table like the one
on the left.

(c) Download the folder Octave Assets to the desktop and fire
up Octave and point it to the folder.

(d) Open the Octave file distance_LUT_fit.m and over-write
data in matrix A = […]; with yours. Run the script (command
line). You will see your data and a line which has no meaning at
all. Here’s what I got, on the left, (after I fitted the red line, your
red line will be really off at first). If your data does not get
plotted over the whole graph, comment out (using %) the
following line in the Octave script %line(x,y);

(e) We have to find the gradient of this line. Estimate the dist
range in your data corresponding to the green arrow (I get 350
– 100 = 250) and the 1/width range (I get 0.026 – 0.01 = 0.016).
The gradient estimate is 250/0.016 = 15625.

(f) Now find the intercept, the dist value where 1/width = 0. I
get around -30.

(g) Now stuff these values into the Octave script where
indicated.

Robot Vision 3

2. Automated line fitting

Here we shall use an algorithm built-in to Octave to find the line
which fits our data optimally. We shall use your estimated slope
and intercept parameters to make an automated fit.

(a) Open the script PixyDist.m and copy and paste your data
into matrix A = […]; over-writing my values.

(b) Put your estimated gradient and intercept into the script
(near line 33) replacing my values.

(c) Run the script and look at the nice optimal fit of distance to
width. Look at the r2 value, I get 0.997. This means that the
curve explains 99.7% of the data, very acceptable.

(b) Note down the coefficients (values of parameters) reported.
I get 15276.2 for the gradient and -38.3 for the intercept. This
means that I can write the following function to get distance
from width. See where I put in the coefficients.

float getDistanceFromObject(uint16_t width)

{

 float dist

 dist = (15276.2)/(float)width – 38.3;

 return dist;

}

4. Testing your Calibration

(a) Open up the sketch CBP_2403_R_Dist_Test and look for the
above function. Replace my parameters with yours.

(b) Run the sketch and fire up the Serial Monitor. Place the red
object in PixyCam’s field of view at a few measured distances.
Compare the physical distance with the distance recorded,
according to your calibration. If it doesn’t work, I have some
tissues to mop-up your tears.

All done!

Nature of Computing 4

