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Chapter 5 
Robot Vision 

5.1 A brief Introduction 
Mobile robot perception is an interesting field of study and 

has evolved from ad-hoc solutions to specific robot situations 

to more grounded theory. Robots can be equipped with 

human-like senses (vision, sound, touch) but these can be 

supplemented with various others. Ultrasonic ‘ping’ 

rangefinders are perhaps inspired by the bat, motion detection 

by the fly eye. The compass could be likened to bird-brain 

sensory areas; it’s interesting to look for natural analogues of 

other sensors such as GPS, wheel encoders, gyroscopes, laser 

rangefinders and doppler sensors. 

 Sensors can be classified as exteroceptive, those 

which respond to the external environment, such as vision, 

and proprioceptive, those which respond the robot’s insides, 

such as battery voltage, wheel position and wheel load. 

Human vision is both a powerful sensory medium and is 

incredibly difficult to mimic in a robotics context; remember 

that over 50% of our brain is devoted to solving vision 

problems. Compared with other sensors, such as laser range-

finding which responds to one (or a few) objects in a scene, 

robot vision has the potential to give information about the 

entire scene structure. The laser range-finder sends out a ray, 

and its collision with an object occurs at a particular angle 

and distance, whereas a camera has a field of view and can 

report all objects within that field. Usually images are 

processed before analysis; this may include edge-detection, 

segmentation and object labelling, or specific transforms 

which return information about straight lines, extracted by 

combing edges (Hough transform).  
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5.2 Limitations of Microcontroller Robots 
First, we must accept the limitations of developing Computer 

Vision solutions for the small mobile robots, often based on 

Arduino technology we encounter. The first limitation is 

memory size. Consider a small image of resolution 300x200 

with three colour channels, i.e., 3 bytes per pixel, which 

requires 180 kB of storage. The Arduino Mega2560 has 8 kB 

of data memory; clearly you cannot run image processing 

algorithms on this MPU, since there cannot be an image in 

memory! The second limitation is processing speed; take a 

300x200 grey-scale image, performing a convolution with a 

3x3 kernel, at a rate of 60 fps, requires a MPU clock speed of 

over 60 MHz whereas the Arduino gives us 16 MHz. 

 How can this be solved? Some companies offer 

Arduino-compatible alternatives with huge memory and fast 

processors (e.g, the Maixduino has 8 MB of data memory and 

runs at 400 MHz and retails at around £25). These boards 

mainly use the STMicroelectronics ‘Cortex’ MCU which is 

industry standard; the Maixduino board supplements this 

with a Kendryte AI processor. Compared with the Arduino, 

these boards are often tricky to bring into service, and 

documentation and blogs are hard to find, however we have 

had recent success getting the Maixduino up and running 

using PlatformIO. Then, of course, we could cross over to the 

dark-side and use a Raspberry-Pi, or even the NVIDIA Jetson 

technology. 

 Another solution is to off-load vision processing to a 

dedicated board, which applies one or more image processing 

algorithms, and sends the extracted features (such as 

segmented object sizes) to the Arduino for analysis. A feature 

can be coded in a few bytes, so memory space and transfer 

and processing rates is not an issue. This is the solution we 

shall encounter, our ‘Pixy2’ camera and processing board, 

which runs algorithms to (i) detect coloured blobs and return 

their location and size, (ii) detect lines, returning their 

endpoints as (x,y) coordinates in the image, (iii) detect types 

of intersections between lines. These are useful functions for 
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Figure 5.1 Pin-hole camera viewed from the top. 

Rays from the red object (width W) pass through 

the pinhole and create an image of size x on the 

camera's CCD retina. 

Figure 5.2 Arrangement we shall use in the lab, 

where the geometrical discussion is still valid. 

a Robot Vision system, as we shall see. In addition, Pixy2 lets 

us extract individual pixels from the image, so we could just 

about code our own algorithm, e.g., a multi-line detector. This 

device is impressive, it boasts a dual-core 204 MHz NXP 

LPC4330 processor with an Aptina MT9M114 1296 x 976 

resolution camera. 

5.3 Pin-hole Camera 
This is the simplest possible camera which you may have 

encountered in GCSE Physics and is a good approximation 

for many lens-based cameras. Look at Fig.5.1 showing a top 

view of a camera. Rays (green) from the red object pass 

through the camera iris (pin-hole) and form an image on the 

charge-coupled-device (CCD) retina. Sizes and distances are 

shown. The variable 𝑥 is what we observe from the camera 

(and our code will report this). We need to know how to 

deduce the distance L of the object from the camera. We 

certainly do not know the value of d and we would like not to 

have to measure the width W directly. 

But let’s first remind ourselves of the geometry. Using similar 

triangles, we have 

𝑥

𝑑
=

𝑊

𝐿
 

therefore  

𝐿 = (
𝑊𝑑

𝑥
)              (1) 

This tells us that if we measure a small image width x then 

the object is far from the camera. Now, let’s say we place an 

object at a known distance 𝐿0 from the camera, and we 

measure the corresponding image size 𝑥0, then substituting 

into (1) we have 

𝐿0 = (
𝑊𝑑

𝑥0
)              (2) 

and dividing (1) by (2) we find 
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𝐿 =
1

𝑥
(𝐿0𝑥0)              (3) 

This is useful, since the quantities in the bracket are known 

(we measure them), so we can deduce any distance L from 

the image width x, returned by our code. This is the process 

of calibrating our camera, preparing it for use. Note the units 

of the variables in (3). Both 𝐿 and 𝐿0 are measured in physical 

units (e.g. mm) but the x values are measured in pixels. 

5.3.1 A Worked Example 
Suppose we calibrate the camera. Assume the camera width 

resolution is 320 pixels. We choose to place the object so that 

its image completely fills the camera width. Let’s assume we 

find this occurs at an object distance of 100 mm Then the 

above expression becomes 

𝐿 = 32,000
1

𝑥
        (4) 

Now we make a measurement of the image width x and we 

find this is 160 pixels. The distance to the object is 

(32,000/160) = 200 mm. 

Now let’s move the object and measure the image width x 

again, and say it has increased by the smallest amount, 1 pixel 

from 160 to 161. The object width is now (32,000/161) = 

198.75 mm. This gives us the smallest measurable change in 

object distance for this situation, 1.25mm. Now let’s 

investigate this, mathematically. 

5.3.2 Sensitivity Analysis 
It is useful to ask the question “how much does x change, 

when the distance to the object L changes?”. This is one 

useful measure of the camera sensitivity. The quantity we 

wish to obtain is the relative (or fractional) change in x to L 

in other words 

∆𝑥

∆𝐿
 

From expression (3) simple calculus tells us that 
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Figure 5.3 Experimental arrangement to 

calibrate Pixy2 

∆𝑥

∆𝐿
= − (

𝐿0𝑥0

𝐿2
)            (5) 

So, the sensitivity depends on L (in the denominator). For 

small values of L this sensitivity is large; a change in object 

distance will produce a larger ∆𝑥 in the image width. This 

tells us that the camera is more sensitive to changes in object 

position L when the object is closer to the camera. 

We can invert expression (4) and ask, “what is the smallest 

change in object distance which we can record in the camera 

image?”. 

∆𝐿

∆𝑥
= −

1

𝑥2
(𝐿0𝑥0)            (6) 

The smallest change in measured image width ∆𝑥=1 pixel. 

Using the values from our worked example above, 𝐿0 =

100 𝑚𝑚, 𝑥0=320 pixels, and 𝑥=160 pixels we find 

∆𝐿 =  −
1

25600
(32000) = 1.25 𝑚𝑚 

This agrees with our worked example above. Perhaps this 

additional maths was not worth the effort. 

5.4 Calibration of the Pixy2 Camera 
The pinhole camera model presented above is useful in 

providing us with some understanding of the operation of a 

real camera. The actual operation of a real camera is best 

obtained using data from physical measurements. Here we 

report on calibration measurements for the Pixy2 camera, the 

experimental arrangement is shown in Fig.5.3 where the 

distance between the red object and the camera was changes 

(range 100 – 360 mm) and the image width in pixels 

measured. Since we know the relationship is inverse, see 

expression (3) then we plot distance versus 1/width. In other 

words, we are looking for the following linear relationship. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚 (
1

𝑤𝑖𝑑𝑡ℎ
) + 𝑐         (7) 
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where m is the gradient of the straight line, and c is the 

intercept. Here’s some typical results. The gradient is 

calculated as the length of the green arrow divided by the 

length of the red arrow (in units shown) and the intercept is 

the dist value where 1/width is zero on the plot 

 

My estimates are: gradient = 15625, intercept = -40. So, the 

approximate relationship between width and distance is 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 15625 (
1

𝑤𝑖𝑑𝑡ℎ
) − 40         (8) 

However, we can do better than that. We can input the 

gradient and intercept estimates into a nonlinear regression 

program, which fits the curve to the data automatically, and 

gives us the optimal values for gradient and intercept. 

 

5.4.1 Automatic Non-Linear fitting 
This was done using the Octave script PixyDist.m which 

makes use of the function nlinfit. You need to provide a data 

set and a model to this function, here our model is the inverse 

relation between width and distance. The syntax for the 

model is 

@(p,w)  (p(1)./w) + p(2)        (9) 
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The @(p,w) tells us that a function of variable w will follow 

where p are the parameters to be fit by the function. Running 

the script yields the following output 

estimated parameters 15276.4 
-38.3 

95% confidence intervals 14606.6  to 15946.1 
-51.5  to -25.1 

r2 value 0.9966 

 

The r2 value tells us that 99.7% of the data is explained by 

the fitted curve. The confidence intervals are fine, though the 

range for the second parameter is perhaps a little large. Our 

manual fit was not bad at all! The final relationship between 

width (pixels) and distance (mm) is therefore 

𝑑𝑖𝑠𝑡 =  
15276.7

𝑤𝑖𝑑𝑡ℎ
− 38.3              (10) 

We can use expression (10) in our code. Just for complete- 

ness, here’s the non-linear fit curve. 

 

This non-linear curve fitting is a useful skill to have for other 

work. Now we can use the above values and write a function 

to convert image width to distance. 

float getDistanceFromObject(uint16_t width) { 

  float dist; 

  dist = gradient/(float)width + intercept; 

  return dist; 

} 

 

Figure 5.4 Robot moving through a cluttered 

environment, needs to localize each object so it 

can navigate between them. 
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Figure 5.6 Field of view of a camera, only 

objects B and C are perceived 

We have managed to write a computational function which 

captures the workings of the camera based on experimental 

data. 

5.5 Application – Object Localization 
Object localization is more than object detection. In a 

detection situation, we are content with detecting that the 

robot is about to collide with something, so we can avoid it. 

Localization is more precise; when a robot localizes an object 

it finds out where it is (relative to its own location), in other 

words, it must find the angle of the object and the distance to 

the object. 

When a robot moves in a cluttered environment (Fig.5.4) it 

needs to know where the objects are located. How it does this 

depends on its sensors. If it has a laser sensor, which sends 

out a ray which collides with an object, then it is clear that it 

needs to scan the space it is moving into. This means rotating 

the laser ray from 0 to 180 degrees (looking forward) and 

sensing any object at any angle. This is shown in Fig.5.5.  

But when the robot has a camera, it may not need to do this 

scanning, since the camera captures objects within its field of 

view. The robot could simply analyze what it sees and based 

on this it would decide how to move. 

 

 Figure 5.6 shows such a scenario. Consider the case of a 

single object in the camera’s field of view. The Pixycam can 

tell us the x-location of the object (measured horizontally 

from the left image boundary) and we can use this to generate 

an error signal to drive the robot wheels to move the object 

towards the centre of the FOV. This is shown in Fig.5.7 where 

the object is to the right of centre, so the robot has rotated 

clockwise in order to centre the object  

If the camera is pointing forward, then the object is in the 

correct place when it is at the centre of the image; here there 

Figure 5.5 Robot scanning an environment. 

Top, scans, middle, finds an object at 110 

degrees, bottom rotates to face the object 

ready for the kill 
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is zero error. We define a positive error when the object is too 

far to the right, 

𝑒𝑟𝑟𝑜𝑟 = 𝑥 − 𝑓𝑟𝑎𝑚𝑒𝑤𝑖𝑑𝑡ℎ/2 

First, we normalize the error, dividing the above by the 

value of 𝑓𝑟𝑎𝑚𝑒𝑤𝑖𝑑𝑡ℎ/2. This results in an error which is in 

the known range of -1.0 to 1.0 irrespective of the image 

frame width. The drive signal to rotate the robot is taken (in 

the first instance) to be proportional to this normalized error. 

This whole algorithm can be seen in the following code 

snippet. 

 

x = pixy.ccc.blocks[0].m_x; 

error = ((float)x - (float)frameWidth/2.0); 

error = error/((float)frameWidth/2.0); 

 

driveR = -Kp*error; 

driveL =  Kp*error; 

driveServos(driveL,driveR); 

 

 

The coefficient 𝐾𝑝 is called the proportional gain for the 

above controller. We can estimate a suitable value. We 

know that the drives for our robot are around 20 – 40, and 

we have normalized the error, so we find 𝐾𝑝 ≈ 30. 

 
 

 

 

 

 

 

 

 

Figure 5.7 Object to the right of centre. Its 

location x and frameWidth/2.0 define the error 

signal telling the robot how much to turn. 


