
Chapter 4 Navigation 1

Chapter 4
Navigation

4.1 A brief Introduction
We spend a lot of time walking around with a purpose; we

have a goal, some place in space we must or desire to arrive

at. That’s in our mind, and everything else on our journey

seems almost irrelevant; we negotiate paths, cross some

roads, avoid walls and other folk unless we bump into a friend

and stop for a chat; we may interrupt our individual goals,

and decide to go for a coffee. To achieve this navigation, we

use a combination of information; we may know the

environment we are navigating through, the familiar corridors

and rooms of a building we know. Also, we can adapt to

changes in this familiar ‘map’ we have in our mind, when

new furniture is placed along our way, and of course we can

avoid other pedestrians.

 Robot navigation is not too dissimilar; robots have a

current position and a goal position, and our job is to devise

algorithms to get them from the one to the other. Like us, they

may have a map of their environment which they can use to

navigate, and they should also be able to avoid obstacles. So,

again there are two possible approaches to navigation we

have seen before, a deliberative approach where the robot

reasons using a stored map, and a reactive approach where it

uses real-time sensor data to respond to obstacles and

openings such as doors. These approaches may be called

planning and reacting.

 If the robot has a map of the environment, then the

navigation problem is almost totally solved, however this

may not be feasible due to constraints on robot memory and

processing; this is especially true for the robots we are

working with. Remember the microcontroller is dealing with

many concurrent tasks; sensing the environment and driving

its motors, so there may be little processing power left over

2 Chapter 4 Navigation

Figure 4.1 Robot moving to the right in a

cluttered field of obstacles

Figure 4.2 Robot equipped with an ultrasonic

detector which can be scanned from right (0

degrees) to left (180 degrees).

to completely analyze a stored map and decide where to go.

That’s why we shall focus on reactive approaches.

 To be able to navigate, our reactive robot needs to

know exactly where obstacles are located in relation to the

robot’s pose (location and heading). The same is true for the

detection of openings or gaps between obstacles. We shall

start with these situations.

4.2 Object Localization
Consider the robot moving in the cluttered environment

shown in Fig.4.1. We can see that the robot is moving towards

a definite collision; it needs to scan the space it is moving into

and detect the obstacle it is most likely to collide with first.

So, we must equip our robot with some sort of scanning

device, where it will scan the 180-degrees of space in front of

it. We can choose various technologies for this scanner, laser,

infra-red, but here we shall use our trusty ultrasonic device.

The discussion is the same for other scanner types.

 Our robot is shown in Fig.4.2, the us-scanner is

mounted on a small servo-motor which can move between 0

and 180 degrees, and we arrange that at 90 degrees it is facing

forwards in the direction the robot is facing. Let’s start with

the simple problem of localizing a single object in the robots

‘field of view’; so, the robot should find the angle of the

object relative to its forward direction, and also the distance

to the object. Then it can rotate so it is pointing at the object

and then move towards it. This could form a useful

application where the robot clears all objects from its arena.

 The four stages of this algorithm are shown in Fig.4.3,

first the robot (at rest) scans its environment and stores angles

and distances to objects it encounters in an array. Then, still

at rest it analyses the stored array and looks for the closest

object and notes the angle of this object. Stage 3 it rotates so

it is facing this object and finally in stage 4 it moves towards

this object and pushes it out of the arena. Since there are four

clear stages, we use a Finite State Machine architecture.

Chapter 4 Navigation 3

Figure 4.3 From the top: robot scans the

environment and builds a distance array. It

finds angle of closest distance and rotates to

this angle. Then it moves forwards

The array shown below is a part of the entire array of 180

elements; the index into the array is just the current angle. So,

in this example the smallest distance is 70mm at the array

element 110. This is 110 degrees. In the third diagram we see

the robot rotating from its current direction (90 degrees) to

the target 110 degrees, in other words it must rotate

anticlockwise through an angle 20 degrees.

The code to do this is straightforward; first we must declare

an array of integers size 180, since we shall be scanning over

a maximum of 180 degrees. The index into the array is just

the angle.

float distArray[180];

Then we scan the turret and log the distances

for (angle = 20; angle <= 160; angle += 1) {

 servoTurret.write(angle);

 dist = getDistance();

 distArray[angle] = dist;

 delay(60); // Needed by US ping

}

Code to analyze the data, to find the closest distance and to

return the corresponding angle is

for (angle = 20; angle <= 160; angle +=1) {

 if (distArray[angle] < minDist &&

distArray[angle] > 0.0) {

 minDist = distArray[angle];

 angleFound = angle;

 }

}

Here is the array of distance values indexed by angle

4 Chapter 4 Navigation

Figure 4.4 Robot detecting gap between objects.

4.3 Localization of Openings
Here we are looking at the situation where the robot must

navigate to a target location and avoid all obstacles in its path;

let’s take the case of static objects. This is the situation shown

in Fig.4.1. At any time, there will be two objects closest to

the robot, so it makes sense to consider how to get the robot

to pass through the gap between two objects. This is shown

in Fig.4.4. The algorithm to do this is quite straightforward;

as in the above example, the arena in front of the robot is

scanned. But we do not need to save the distance information

(at least present at each angle. We choose a threshold distance

(red dotted arc in Fig.4.4) and log in a labelArray[angle]. If

the detected distance is less than the threshold, we put a 1 into

the array, else we put a 0 into the array. Here’s the code.

for (angle = 20; angle <= 160; angle += 1) {

 servoTurret.write(angle);

 dist = getDistance();

 if(dist < distThreshold)

 labelArray[angle] = 1;

 else

 labelArray[angle] = 0;

 delay(60);

 }

A typical scan could produce an array like the one shown

below. In this case the objects are located near 102 degrees

and 112 degrees. The centre of the gap between the objects

is shown by the green arrow. The index (angle) of this is

found by calculating the average of the angles when there is

Chapter 4 Navigation 5

Figure 4.5 Robot navigating through a field of

objects, in stages

a label of 1. So, we calculate (100 + 101 + 102 + 103 + 110

+ 111 + 112 + 113/8 = 107.

Having found this angle, we rotate the robot as in the above

example and drive the robot through the gap.

4.4 Stopping at the Centre of the Gap
We might think of a situation where we want the robot to find

the gap and move towards it but stop at the centre of the gap.

This could be developed into an algorithm where the robot

navigates through an entire field of objects, shown in Fig.4.5.

The robot begins at the bottom by scanning and finding the

first pair of objects; it moves to the centre of the gap and then

stops. Then it performs another scan and finds the centre of

the next pair of objects, moves there and repeats.

The algorithm to do this is quite straightforward, in fact it is

a simple extension (and enhancement) of the gap finding

algorithm presented above. All we need to do is, in addition

to logging an obstacle detected in the labelArray[angle] we

need to record the distances in a distArray[angle]. If we

average the distances stored in this array, then this is a good

approximation of the distance to the centre of the gap. So, the

robot moves at the found angle, but in this case to the distance

found. I mentioned that we need to enhance the gap-finding

algorithm, and to do this we need to consider the geometry of

the situation, shown in the sketch below.

The robot is located at the origin (0,0) and we extract from

the distance array the distances to the inner edges of the

objects, 𝑑1 and 𝑑2 and their corresponding angles 𝜃1 and 𝜃2.

Our goal is to calculate the distance to the centre of the gap,

𝑑𝐶 and the corresponding angle 𝜃𝑐. We know how to get this

angle, it is the average

𝜃𝐶 =
1

2
(𝜃1+𝜃2)

6 Chapter 4 Navigation

Now we must find expressions for (𝑥1, 𝑦1) and (𝑥2, 𝑦2).

Using simple trigonometry, we have

𝑥1 = 𝑑1 cos 𝜃1

𝑦1 = 𝑑1 sin 𝜃1

and

𝑥2 = 𝑑2 cos 𝜃2

𝑦2 = 𝑑2 sin 𝜃2Now, we know all distances and angles on the

right of all expressions, so we can calculate (𝑥1, 𝑦1) and

(𝑥2, 𝑦2). All we need to do now is to find the coordinates of

the centre of the gap (𝑥𝐶 , 𝑦𝐶). Another diagram may help.

Let’s think about calculating 𝑥𝐶. We start off at 𝑥1 and must

add half the width of the green dotted triangle

𝑥𝐶 = 𝑥1 +
(𝑥2−𝑥1)

2

which simplifies to

𝑥𝐶 =
(𝑥1+𝑥2)

2

Chapter 4 Navigation 7

So, 𝑥𝐶 is just the average of the bounding x-values. The same

is true for 𝑦𝐶, so life has become quite easy here. Once we

have (𝑥𝐶 , 𝑦𝐶) then we can calculate the desired distance

𝑑𝐶 = √𝑥𝐶
2 + 𝑦𝐶

2

4.5 Other Approaches to Navigation
It’s worth thinking about other approaches which are

possible to implement within the constraints of our small

robots.

The Bug Algorithm
This is the simplest object avoidance algorithm possible.

The robot is instructed to move towards a target place, and if

it encounters an obstacle on its way, it simply follows the

contour of the object by ‘hugging its wall’ until it can see

the target again.

