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Chapter 3 
Sensors 

3.1 A brief Introduction 
As humans our bodies are full of sensors, we depend heavily 

on sensing the external environment through vision, sound 

and touch. These sensors respond to the external environment 

and are responsible for giving us information about what is 

out there. This could be for navigation through a building, 

driving (while avoiding obstacles) reading a menu and 

making a choice of food to eat. Sensors which respond to the 

external environment are called exteroceptive. We also have 

built-in sensors which give us information about our bodies 

(and perhaps minds). We can sense when we have a 

toothache, when we are hungry, when we are tired or irritable. 

Sensors which respond to our internals are called 

proprioceptive. 

 The same classification is true for a robot, typical 

internal variables are battery voltage, motor speed, load on 

the wheels. External robot sensors can provide measurements 

of distance, sound amplitude and pitch and light intensity. 

Speed can be measured by doppler effect (change in pitch 

when a sound bounces off a moving object), and computer 

Vision can lead to object recognition (and therefore 

avoidance), path following and visual ranging. In this chapter 

we shall but take a small taste of what is possible and reflect 

on what we can achieve in our lab. 

3.2 Active Ranging 

3.2.1 Ultrasonic Pinging 
The operation of the HC-SR04 ultrasonic ping detector is 

shown in Fig.3.1. This is somewhat like the principles used 

by bats in echo location. A distance measurement cycle 

begins by emitting a pulse of 40kHz waves from the 

transmitter Tx. This pulse spreads out (with a beam-width of 



Figure 3.1 Ultrasonic Ping; green shows emitted 

pulse and blue reflected pulse. 

about 30 degrees), and if it encounters an obstacle, then it is 

reflected and may arrive at the receiver Rx. The device gives 

us the time for the round trip which is (using the definition of 

velocity = distance over time) 

𝑡 =
2𝑑

𝑣
 

where v is the velocity of sound, around 330 m/s. Note the 

factor 2 since the round trip has distance 2d. Fig.3.1 reminds 

us that we must output a trigger pulse to and input an echo 

pulse from the HC-SR04. Let’s see the details and some code. 

 The diagram below shows the sequence of operations. 

At time ‘A’ we raise the value of trigger from LOW to HIGH 

and hold it there for 10𝜇sec. Then, at time ‘B’ the device 

emits 8 ultrasonic pulses with frequency 40 kHz. When this 

is complete, the device raises its echo pin (which was LOW) 

to HIGH, telling our code the pulse has been emitted, time 

‘C’. When the pulse is reflected and enters the receiver, time 

‘D’, then the ECHO pin goes low. So, by measuring the time 

the echo pin remains high, we know the time it takes for the 

pulse to do its round trip. 

 

 

 

 

 

 

 

 

So, we can invert the above expression and calculate d. 

𝑑 =
𝑣𝑡

2
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The code to do this is straightforward. 

 

digitalWrite(HC_SR04_Tx,LOW);  

delayMicroseconds(2);  

digitalWrite(HC_SR04_Tx,HIGH);  

delayMicroseconds(10);  

digitalWrite(HC_SR04_Tx,LOW); 

duration = pulseIn(HC_SR04_Rx,HIGH); 

mm = 10*duration / 29 / 2; 

 

 

The last line looks a little odd. This does several things; it 

converts duration (measured in microseconds) to seconds, 

then it converts the speed of sound 330 m/s to mm/s, and then 

it divides by 2 to take account of the round trip. The 

calculation has been done using integer arithmetic. 

3.2.2 Limitations of Ultrasonic pinging 
Think of an object around 2 metres away, this could easily be 

a wall in a room the robot must detect. It will take the 

ultrasonic pulse around 0.01 seconds (10 ms) to make its 

round trip. Our code must wait for this time to get the distance 

(unless we use interrupts), even then, the distance information 

is taking too long to be computed. A robot equipped with 10 

such sensors arranged to measure distances all around its 

body must wait 0.1 seconds for this information to be 

available and moving at a leisurely speed of 100 mm/s, it 

would have travelled 10 mm and maybe suffered a collision. 

So, we must turn to faster approaches such as laser pings 

(LIDAR) which operate at the speed of light providing a 

speedup relative to sound of approximately 3 × 108 3 × 102⁄  

which is about a million times. 

  



Figure 3.2 Voltage divider arrangement (resistor 

values not specified) 

3.3 Line Following 

3.3.1 Aside – Resistors and Phototransistors 
We have already encountered robot line following in Chapter 

2 where we looked at the PID control algorithm. Now we 

need to focus on the details of the sensor system, so we can 

understand how to code the control algorithm. The following 

notes are from the point of view of an electronic engineer, so 

we have to get some basics in place, especially resistor 

circuits and circuits with a resistor and a phototransistor. 

Let’s not worry about the theory, but rather look at some 

examples, plus a little dose of logic. 

 The starting point is voltage; we know that the 

Arduino can output a LOW signal (0 volts) and also a HIGH 

signal (5 volts) on a digital output pin. We also know it can 

input a signal on a digital input pin, and this can be HIGH (5 

volts) or LOW (0 volts). So, voltage seems to be the key in 

understanding circuits. Now most input devices can be 

thought of as being configured as part of a voltage divider. 

This is shown in Fig.3.2 The rectangles are resistors, and 

these are connected between 5V and 0V (Gnd). There is an 

output voltage, so the question is what can this be? Well it 

can’t be more than 5 or less than 0, since these values are not 

available at the input, so we conclude that the output voltage 

must be in the range 0.0 – 5.0. So, let’s look at some concrete 

examples in the diagrams below. 

 

 

 

 

 

 

In (a) we two identical resistors, so logic tells us the 5Volts 

must be divided into 2, so we get 2.5V out, it can’t be 
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Figure 3.3 Phototransistor with (a) low level of 

light input, (b) high level of light input 

anything else. In (b) we have a small resistor at the top and a 

huge on at the bottom, the voltage out is almost 5V. This 

makes sense since the output is ‘more connected’ to the 5V 

rail than to the 0V rail (less resistance). Conversely in (c) the 

output is ‘more connected’ to the 0V rail, so the output is 

close to 0V. Of course, you may have notice that the larger 

voltage is found across the larger resistor. 

 Now let’s turn to the phototransistor which is used for 

most light-sensing activities, such as in our line following 

scenario, this is shown in Fig.3.3 where two situations are 

shown. On the left (a) there is a low light level applied to the 

phototransistor (two green arrows) and in (b) there is a higher 

light level (four green arrows). We need to know something 

about a phototransistor 

 
A phototransistor is like a resistor whose 
resistance changes with its light input: 

• Low light level – high resistance 

• High light level – low resistance 

 

 

So, in Fig.3.3(a) the phototransistor has a high resistance, so 

following our argument above, the output will be nearer 0V. 

In Fig.3.3 (b) with a high light level, the phototransistor has 

a lower resistance, so the output is ‘more connected’ to the 

5V rail, so the output is close to 5V. In other words, the output 

of this circuit can give us a binary value ‘there is light’ (5V) 

or ‘there is no light’ (0V). 

3.3.2 A Simple Line Detector 
Here we shall briefly discuss a simplistic line detector, but 

it’s not the one we advise to use, it’s a toy problem just to 

reinforce some of the thinking we have presented above, as a 

stepping-stone to a more serious line detector. Let’s assume 

we have a robot with a left and right sensor as described 

above, see Fig. 3.4(a). The robot is following a dark line on a 

lighter background. We want to know how the above 



Figure 3.4 Simple line detection arrangement 

using phototransistors. 

phototransistor circuit will give us information to keep the 

robot moving along the line. 

In Fig.3.4(b) the robot has strayed to the right and must be 

instructed to rotate anti-clockwise. Let’s have a look at the 

outputs of the L and R phototransistor circuit. The left one is 

darker, and therefore outputs a voltage close to 0V, and the 

right one is lighter, so outputs a voltage close to 5V. So, the 

left-right pair outputs {LOW, HIGH}. In Fig.3.4(c) we have 

the converse, the right phototransistor circuit is darker 

(outputting close to 0V) and the right one is lighter, 

(outputting close to 5V). So, the left-right pair outputs are 

{HIGH, LOW}. We can summarize this in the following 

table. 

Situation Sensors Action 

 L R  

Fig.4(a) on the line HIGH HIGH continue forward 

Fig.4(b) off to the right LOW HIGH rotate anti-clockwise 

Fig.4(c) off to the left HIGH LOW rotate clockwise 

 

This looks like potential input for a FSM as discussed in 

Chapter 2, providing the transit events between states. But as 

we also mentioned, this is a little brutal, and for smoother, 

more delicate control, we need a continuous input from our 

line sensor. So, let’s see how we can achieve this. But first 

we need another step aside. 

3.3.3 Aside – Capacitors and Phototransistors. 
First let’s turn to a capacitor; think of this like a bucket which 

accumulates charge when a current flows into it. When water 

flows into a bucket the water height increases and so does the 

pressure. When current flows into a capacitor the voltage 

(think pressure) similarly increases. Take a look at the 

diagram below. 

 In (a) the capacitor is empty, there is no charge so 

there is no voltage across it. In (b) current has started flowing 

into the capacitor, and you can see some charge has 

accumulated, so there is a small voltage across the capacitor. 
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As the current continues to flow so does the charge 

accumulate (c and d) and the voltage rises. You can see that 

voltage is proportional to charge. 

 So, here’s the circuit for our delicate line detector with 

an explanation of how it works. The blue arrow line is a 

connexion to an Arduino input/output. In (a) this is 

configured as an output and is given a HIGH level. Therefore, 

there is no voltage across and capacitor which therefore does 

not hold any charge. 

 

 

 

 

 

 

 

In (b) we see a time series of what happens when we remove 

the Arduino input, then the capacitor is free to charge, and as 

it charges, its voltage increases. So, the voltage across the 

phototransistor must decrease (since the voltage across both 

must always be 5V). Finally (rightmost circuit) there is 0V 

across the phototransistor. 

 



Figure 3.5 Oscilloscope traces of sensor 

response: Top dark surface, bottom light surface 

How does this help us create a delicate sensor to detect lines? 

Well, remember that the resistance of a phototransistor 

depends on the amount of light falling on it, more light means 

less resistance. So, in the above circuit, when the 

phototransistor gets a lot of light, its resistance is small, so it 

the current into the capacitor is larger, it charges up faster, 

and so its voltage rises faster. Therefore, the voltage across 

the resistor drops faster. This is the voltage we measure, and 

we measure the time it takes to drop to near 0V. A smaller 

time means more light, so the sensor is looking at white; a 

larger time means less light, so the sensor is looking at black. 

 Fig.3.5 shows some actual measurements I made on 

the circuit. You are looking at oscilloscope traces of the 

voltage across the phototransistor (vertical axis) against time 

(horizontal axis). The top photo shows what happens when 

you present a dark surface to the sensor and the bottom shows 

a light surface. The times to go from 5V to 0V are about 

dark surface 3 µsec 

light surface 0.5 µsec 

 

3.3.4 Coding all this Natural Nonsense 
This all may seem complicated, perhaps you feel you have 

had a journey from Siberia to Nepal (via Hereford). So, let’s 

look at some code, which may bring thinking together. 

 

long RCTime(int sensorIn){ 

   long duration = 0; 

   pinMode(sensorIn, OUTPUT);      

   digitalWrite(sensorIn, HIGH);   

   delay(1);                       

   pinMode(sensorIn, INPUT);       

   digitalWrite(sensorIn, LOW);    

   while(digitalRead(sensorIn)){  

      duration++; 

   } 

   return duration; 

} 
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We’re looking at a function which returns the time duration 

for the circuit to respond to the light presented to the sensor. 

This code does the following 

• Set the Arduino pin to output and set it HIGH. This 

discharges the capacitor. 

• Wait 1ms to ensure the capacitor has had time to 

discharge. 

• Set the Arduino pin to input and write a LOW to 

configure its internal operation. 

• The while loop monitors the input voltage to the pin 

and loops until this is zero. During the loop, it 

increments the time duration variable. 

• Finally, the function returns the value of duration. 

In summary, our delicate sensor gives us a broad and 

continuous range of values from light (around 50) to dark 

(around 1000). This is an enormously useful range of values 

which we can easily use to compute the robot’s error from the 

centre of a dark (or light) line. 

Typical code to get the values from a left and right sensor and 

to compute some measure of error looks like this 

   

senseL = RCTime(5); 

senseR = RCTime(4); 

   

error=((float)senseL-(float)senseR)/ 

((float)senseL + (float)senseR); 

 

 

Note that senseL and senseR are long variable types and that 

these have been cast explicitly to floats. This is best 

programming practice. You may ask why the difference 

between the sensor reading is divided by their sum. Well, this 

is the expression 

𝑒𝑟𝑟𝑜𝑟 =  
(𝑠𝑒𝑛𝑠𝑒𝐿−𝑠𝑒𝑛𝑠𝑒𝐿)

(𝑠𝑒𝑛𝑠𝑒𝐿+𝑠𝑒𝑛𝑠𝑒𝐿)
  



If the sensor values are the same (or close) this evaluates to 

close to zero. If one sensor value is large and the other is small 

then e.g., (1000 – 10)/(1000 + 10) = 0.98 which is less than 

1. So this expression will produce error values in the range 

0.0 – 1.0. This value is ‘normalized’ and it is very very useful 

to know it is in this range. 

 


