
Chapter 1 Robot Kinematics 1

Figure 1.2. Wheel rotating with a change in
angle

Chapter 1
Robot Kinematics

1.1 A brief Introduction
Kinematics is the study of movement (well almost) so in this

chapter we are looking at the principles of robot movement,

for our 2-wheeled differential drive robot. The explanation is

mathematical; this is necessary for us to write code to get the

robot moving. The most important expressions are

highlighted. So how does a wheeled robot move? Simply by

driving its wheels. If you drive both wheels at the same

angular speed, then the robot moves forward. If you drive the

left wheel faster, then the robot will arc to the right. Driving

both wheels at the same speed, but in opposite directions, will

make the robot spin about its axis.

1.2 Linear and Angular Velocities
Let’s see how wheels work. Fig. 1.1 shows a wheel

completing a full revolution. Imagine the type is coated with

paint, so as the wheel rotates it paints a nice line on the

surface. How long is this line? Simply the circumference of

the wheel.

Now let’s do a quick calculation. I guess you will remember

the expression for the circumference of a circle radius r. This

is of course 2𝜋𝑟. So, if we have a wheel of radius 33mm then

one rotation will shift the robot a distance (2)(3.1415)(33) =

207mm.

And now for some maths. If one rotation gives a distance of

2𝜋𝑟 then half a rotation will give half of this distance, but

what about if the angle of rotation is ∆𝜃? (Here the symbol ∆

means a change and 𝜃 is the angle. Well, the arc of the circle

corresponding to the angle ∆𝜃 is just

∆𝑠 = 𝑟∆𝜃 (1)

Figure 1.1. Rotating wheel leaving a track of
blue paint on the surface

Robotics 2

where the angle is in radians (more on that later). So, this is

the length of the line painted by the robot, and is the distance

moved forward, look at Fig.1.2.

Now let’s think about the robot’s speed in mm/sec. Speed is

the distance moved ∆𝑠 in a time interval ∆𝑡. Here’s the

expression for speed.

𝑣 =
∆𝑠

∆𝑡
 (2)

Continuing with our example, if the robot wheels make one

revolution in 2 seconds, then the robot speed is

𝑣 =
2𝜋𝑟

2
=

207

2
= 103.5 𝑚𝑚/𝑠𝑒𝑐

Try to imagine what that means. The symbol for speed is 𝑣

since what we are really talking about is velocity, speed in a

particular direction (forward or backward).

But robots move by turning their wheel with their

servomotors and our computer programs must provide drive

to the motors to make them rotate. To make a servomotor

rotate, we must give it a series of ‘pulses’ where the pulse

width determines the rotational speed. For the robot we shall

be using, the ‘Parallax Activity Bot /BoE Bot’ the

relationship between pulse width and speed is shown in the

diagram below. The points show real measurements, and the

Chapter 1 Robot Kinematics 3

red line has been placed to capture the most useful part of the

experimental curve, where speed is proportional to pulse

width. You can see that with a pulse width of 1500 µs

(microseconds) the motor does not rotate. Therefore, in our

code (and in our thinking) we shall define a quantity drive

relative to this 1500. So, a drive of 50 will create a rotational

velocity of around 30 rpm, and a drive of -50 will rotate the

motor at this rpm, but in the opposite direction.

It’s easy to get a relationship between drive and rpm from the

red line above; here we find this is

𝑑𝑟𝑖𝑣𝑒 =
50.0

30.0
𝑟𝑝𝑚 (3)

In our code, you will see the variables driveL and driveR

which are, of course, the drives sent to the left and right

servomotors.

Now we need to understand how the values of driveL and

driveR will determine the robot’s speed; let’s assume these

are the same, so the robot will move forwards (we’ll look at

other possibilities later). If we stick expression (1) for the

distance gone when the wheel rotates through an angle, into

expression (2) which is the definition for linear robot velocity

moving forward, we get

𝑣 =
∆𝑠

∆𝑡
=

𝑟∆𝜃

∆𝑡
= 𝑟

∆𝜃

∆𝑡

Here ∆𝜃 ∆𝑡⁄ tells us how fast the wheel angle changes with

time, so this is the angular velocity of the wheel; we give this

the symbol 𝜔 so we have a fundamental expression

𝑣 = 𝜔𝑟 (4)

This makes sense; if the wheel radius r is increased, then the

linear speed v is increased, and if the angular velocity 𝜔 is

increased (the wheel rotates faster) then the linear speed is

increased. All seems good, and it is. There may be a

conceptual stumbling block, however, it’s due to the units of

angular velocity 𝜔. The angle change in (1) is measured in

Robotics 4

radians (in one revolution, there are 360 degrees which is 2𝜋

radians, a little over 6). So, we need to connect angular

velocity in radians/sec to angular velocity in rpm, so we can

use the above drive graph.

Let’s say the wheels are rotating at n rpm, i.e., 𝑛𝑟𝑝𝑚.

Therefore, the revs per second is

𝑛𝑟𝑝𝑠 =
𝑛𝑟𝑝𝑚

60

Each rotation the wheel rotates 2𝜋 radians, therefore the

radians per second (𝜔) is just

𝜔 = 2𝜋
𝑛𝑟𝑝𝑚

60
=

2𝜋

60
𝑛𝑟𝑝𝑚

i.e.,

𝜔 =
2𝜋

60
𝑛𝑟𝑝𝑚 (5)

Let’s work through an example how we would use this maths

to make a robot move forwards a desired distance, in a desired

time.

Help! What are radians?

Think of a wheel rotating once, through 360

degrees. We know the distance gone is the

circumference of the wheel 2𝜋𝑟. Now

expression (1) tells us that this distance is 𝑟∆𝜃.

So, we have

2𝜋𝑟 = 𝑟∆𝜃

and cancelling the r gives us

∆𝜃 = 2𝜋

therefore, in a circle, there are 2𝜋 radians.

Chapter 1 Robot Kinematics 5

Let’s take the case of driving the robot a desired distance of

80mm in a desired time of 2 seconds, a speed of 40 mm/s.

We shall revisit this below when we discuss how to code our

robot.

1.3 Movement on an arc
Have a look at Fig.1.3, at the bottom you will see the robot.

The length of its axle, connecting its wheels is 2𝑎 and for the

Parallax robot we are using, this is 104.0 mm, so we have a

= 52 mm.

The diagram shows that the centre of the robot (between the

wheels) moves along an arc of radius R. So the left wheel

moves along an arc of radius (𝑅 − 𝑎) and the right wheel

moves along a larger arc of radius (𝑅 + 𝑎). Clearly the right

wheel is moving faster than the left. The robot’s pose

changes, it started off moving North, and it ends up moving

Northwest, having changed its bearing by an angle 𝜃𝑅𝑜𝑏. The

subscript Rob reminds us we are thinking about the entire

robot, rather than its wheels.

To understand the maths which follows, we apply the

relationship
∆𝑠 = 𝑟∆𝜃 used above. So, for the left wheel we have

∆𝑠𝐿 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏 (6𝑎)

and for the right wheel

Figure 1.2. Robot moving on an arc.
Distance a is between each wheel and the
robot centre.

𝑣 =
∆𝑠

∆𝑡
 (2)

v = 80/2 = 40 mm/sec

𝜔 =
𝑣

𝑟
 from (4)

𝜔=40/33.0 = 1.21 rad/sec

𝑛𝑟𝑝𝑚 =
60

2𝜋
 𝜔 from (5)

𝑛𝑟𝑝𝑚= (60*1.21)/6.28 = 12 rpm

drive = (50.0/30.0)*12 = 20

Robotics 6

∆𝑠𝑅 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏 (6𝑏)

Now let’s imagine that the robot takes a certain time interval

∆𝑡 to complete its trajectory along the arc. To find the robot

wheel speeds, we must divide distance gone by each wheel

by this time interval, see expression (2). So, we get for the

left wheel

𝑣𝐿 =
∆𝑠𝐿

∆𝑡
= (𝑅 − 𝑎)

∆𝜃𝑅𝑜𝑏

∆𝑡
 (7𝑎)

and for the right wheel

𝑣𝑅 =
∆𝑠𝑅

∆𝑡
= (𝑅 + 𝑎)

∆𝜃𝑅𝑜𝑏

∆𝑡
 (7𝑏)

This is fine, but these expressions are not really telling us

much. So, we must go forwards a bit. Remember the

expression (1) connecting wheel distance and angle. For the

left and right wheels these become, since both wheels have

the same radius.

∆𝑠𝐿 = 𝑟∆𝜃𝐿 , 𝑎𝑛𝑑 ∆𝑠𝑅 = 𝑟∆𝜃𝑅

and putting these into expressions (7a) and (7b) we find

𝑟 (
∆𝜃𝐿

∆𝑡
) = (𝑅 − 𝑎) (

∆𝜃𝑅𝑜𝑏

∆𝑡
) (8𝑎)

and

𝑟 (
∆𝜃𝑅

∆𝑡
) = (𝑅 + 𝑎) (

∆𝜃𝑅𝑜𝑏

∆𝑡
) (8𝑏)

I’ve stuck in some brackets here, where changes in angles are

divided by a corresponding change in time. These are angular

velocities, speeds of rotation.

The symbol for angular velocity is omega 𝜔 (lower case) or

Ω (upper case). Lower case 𝜔 is the angular velocity of the

wheels and upper case Ω is the angular velocity of the robot

body, when viewed from above; this is just the rotation speed

of the robot.

So, we can rewrite equations (8) like this

Chapter 1 Robot Kinematics 7

𝑟𝜔𝐿 = (𝑅 − 𝑎)Ω𝑅𝑜𝑏

𝑟𝜔𝑅 = (𝑅 + 𝑎)Ω𝑅𝑜𝑏

therefore

𝜔𝐿 =
(𝑅 − 𝑎)Ω𝑅𝑜𝑏

𝑟
 (9𝑎)

𝜔𝑅 =
(𝑅 + 𝑎)Ω𝑅𝑜𝑏

𝑟
 (9𝑏)

These are very useful expressions. As with all expressions,

think of the stuff on the right of the = sign as an input to a

computation, what we want to calculate, and the stuff on the

left is what we have to code to make this happen. So, if we

want the robot to go around an arc of radius R with an angular

velocity Ω𝑅𝑜𝑏 then we have to make the motors rotate with

angular velocities 𝜔𝐿 and 𝜔𝑅.

1.4 Special Cases
There are two special cases of the maths in expressions (9).

First, when the robot is moving straight, then we can write

𝑅 → ∞ so we can neglect a in the expressions, and R divides

out. You can see this by calculating the ratio of the wheel

omega’s

𝜔𝐿

𝜔𝑅
=

(𝑅 − 𝑎)

(𝑅 + 𝑎)
 (10)

where the ratio becomes R/R = 1 which tells us that the

omegas are the same, i.e., both wheels rotate at the same

speed.

The other special case is when 𝑅 = 0, this is where the robot

rotates about its centre. Putting this into expressions (10) we

find

𝜔𝐿

𝜔𝑅
= −1 (11)

so, the omegas are equal and opposite!

Robotics 8

A Worked Example
Let’s say we want our robot to travel along an arc of radius

300mm and change its pose by 45 degrees, and it does this in

2 seconds, see Fig. 1.4.

The angle expressed in radians is 45𝜋/180 = 0.785rad. The

angular velocity of the robot Ω𝑅𝑜𝑏 is 0.785/2.0 = 0.393

rad/sec.

Since a = 52mm for the Parallax robot and our arc has a radius

of 300 mm, plugging these into expressions (8) gives us

𝜔𝐿 =
(300 − 52)0.393

33
, 𝜔𝑅 =

(300 + 52)0.393

33

and so, we calculate

𝜔𝐿 = 2.85 𝑟𝑎𝑑 𝑠⁄ , 𝜔𝑅 = 4.19 𝑟𝑎𝑑 𝑠⁄

Now we need to convert these omegas to rpms. Since an

omega of 2𝜋 rad/s corresponds to 1 rev/sec, then 1 rad/s

corresponds to 1 2𝜋⁄ rev/sec. Then 𝜔 rad/s corresponds to

𝜔 2𝜋⁄ rev/sec, and therefore to 60𝜔 2𝜋⁄ rpm. To get revs per

second we divide the omegas by 2𝜋 which gives us

left 0.45 revs/sec right 0.67 revs/sec

and to get the revs/min we multiply by 60

left 27 revs/min right 40.2
revs/min

and using the expression (3) for drive, we finally have

left drive 45 right drive 67

which are the drive signals we send to our motors.

All of these calculations are done in our Arduino code. The

purpose of this worked example is simply to explain what the

code actually does.

Figure 1.3 Worked example. The robot
rotates 45 degs on an arc 300mm and
takes 2 seconds.

Chapter 1 Robot Kinematics 9

1.5 How to Code a Real Robot
We need to get the robot to move forward a certain distance

we specify or rotate an angle we specify or rotate on an arc.

In our code, we have to specify drives which will make the

robot move as we want, then send these drives to the servos.

Here’s a code snippet which gets the robot moving forwards

driveL = 30;

driveR = 30;

driveServos(driveL,driveR);

This code will get the robot moving (for ever) but we would

rather like to tell the robot how far to move and with what

speed. So, here’s some code to get the robot moving forward

for a specified distance (in mm) over a specified time. We

relate the code to the corresponding maths. All the variables

have been declared for you in the code templates.

desDist = 80;

desTime = 2.0;

desSpeed = desDist/desTime; expression (2)

omega = desSpeed/wheelRad; from expression (4)

rpm = (60/(2*PI))*omega; from expression (5)

driveL = (50.0/30.0)*rpm; expression (3)

driveR = driveL;

driveServos(driveL,driveR);

delayTime = (int)(desTime*1000)

delay(delayTime);

driveServos(0.0,0.0);

The last three lines deserve some comment. The lines before

them set the motor drives and therefore their speeds. These

Robotics 10

last three lines specify how long the servos must spin. So we

calculate the delayTime in milliseconds from our desTime

(in seconds), and pass it to the delay(…) function which

suspends the MPU for this time. Then, we drive the servos

with driveL = 0.0 and driveR = 0.0 which will make them

stop. So, the final result is that the robot will move 80mm

forwards and it will take 2secs to do this, both values we

specify.

Now the maths is perfect, and the code is perfect (they are

both perfect abstract systems of thinking), but when you get

the robot to execute this code, it will not move 80mm

forwards, it will be more, or it will be less. Why? Because the

robot is not abstract, it is not a simulation, it is really

embodied in the real world. Think of its motors, their

datasheet may specify their ‘accuracy’ as 10%. This means

that if you ask them to rotate with an angular velocity of 10

rpm, they will rotate with anywhere between 9 and 11 rpm.

In the worst-case scenario, the left motor could rotate at 9 rpm

and the right at 11 rpm; the robot would not go straight

forward but arc to the left! Also, we need to know the wheel

radius, and so we measure it, but our measurements are

subject to errors. And, also the relationship between drive

and rpm may not be the one we presented earlier, each motor

is different. Looking at the drive-rpm curve again

(reproduced below) we see a real issue.

Chapter 1 Robot Kinematics 11

If we look at pulse Width 1500 (drive = 0) we see that

increasing the drive to about 20 does not make the motor turn!

There is a ‘dead band’. This means that we cannot use small

forward drives or motor speeds.

So, back to our problem. There are two ways to cope with this

problem: The first relies on direct observation of the robot,

and measurement of how it moves. Let’s say we ask the robot

to move 80mm and we measure how far it moves, 90mm; it’s

gone too far. So we could reduce the wheel velocity omega,

but we know this is dangerous, since if omega is made too

small, then the motor will not turn.

There is another way to make the robot travel less far; we can

reduce the amount of time we drive the motors. So, we change

the desTime

correctionFactor = desDist/actualDist;

desTime = desTime*correctionFactor;

It is important that we make this change at the appropriate

place in the code, it must not be made before we calculate the

omega’s since they depend on the desTime. Here’s where to

put the correction, so that it only affects the delayTime which

tells the motors how long to rotate.

correctionFactor = desDist/actualDist;

desTime = desTime*correctionFactor;

delayTime = (int)(desTime*1000)

delay(delayTime);

driveServos(0.0,0.0);

1.6 Wheel encoder technology
Here we shall look at improving our work on movement using

dead reckoning by employing a robot proprioceptive sensor

which measures the position of the wheels. The sensing

device is called a ‘wheel encoder’, see Fig.1.5. As the wheel

rotates, IRed light from the transmitter shown at the top

Figure 1.4 Wheel encoder: Top the IRed
transmitter and receiver measures reflections
from the spokes (bottom)

Robotics 12

passes through slots in the wheel, shown at the bottom. When

the light hits a spoke, it is reflected to the IRed sensor and

produces a pulse sent to the Arduino. So, as the wheel rotates,

it sends a series of pulses to the Arduino shown in the diagram

below.

The pulses arrive at Arduino pins especially configured to

receive hardware ‘interrupts’ and when a pulse arrives, the

code breaks out of its current execution place and jumps to an

Interrupt Service Routine (ISR) and execution continues

there. When the ISR is complete, then execution returns to

the place where it was forced to break out from. Each wheel

has an interrupt, the ISR for the right wheel is shown below.

void ISRoutineR() {

 countR++;

}

You can see this ISR increments the value of countR i.e.,

every time the encoder sends a pulse, this value is

incremented, so the code knows how many steps the wheel

has rotated. Here’s an overview of how interrupts work. First

the hardware pin is attached to the ISR, and the interrupt is

configured to respond to a CHANGE (i.e., a rising or a falling

pulse edge. This code is in setup();

attachInterrupt(digitalPinToInterrupt(EncoderR

_pin),ISRoutineR,CHANGE);

Here’s what happens when the code is executing in loop() and

a pulse arrives. Code execution is shown by the green arrow

with a blob. When the interrupt is received, execution

transfers execution returns to where it left off. It is important

Chapter 1 Robot Kinematics 13

Figure 1.5 Angle shown between pair of rising

and falling pulse edges

to understand that this occurs at the level of hardware

instructions, not lines of code. It is extremely fast.

Now we need to understand how many pulses are received in

one wheel revolution, and therefore how far the wheel moves

between pulses. There are 32 spokes in the wheel, and since

the ISR responds to both rising and falling edges, then there

are 64 pulses per wheel revolution. The angle rotated between

pulses is a little under 6 degrees, see Fig.1.6. But how far has

the wheel moved? We know that

∆𝑠 = 𝑟∆𝜃

so for a wheel radius of 33 mm, we have, calculating using

radians

∆𝑠 = 33
2𝜋

64

which works out to be 3.24 mm. This is the accuracy of any

measurement of wheel travel we can make since it is the

smallest step in distance we can possibly know.

1.7 Moving on a straight line of given

distance.
Let’s say we want the robot to move a desired distance. How

do we use wheel encoders to make this happen? First we need

to calculate the number of steps required, which is the number

Robotics 14

Figure 1.7 Geometry for moving on a curve
with specified angle and radius.

of pulses the encoders receive, setting countL and countR.

The number of pulses is simply the distance gone divided by

the step size,

𝑛𝐿 = 𝑛𝑅 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡

∆𝑥

For example, to get the robot to move 300 mm, we need to

count 300/3.24 = 93 pulses, approx. Here’s some example

code which will do the job. We set the motor drives and

switch on the servos. Then we monitor the actual counts and

when they exceed the counts we need (𝑛𝐿 = 𝑛𝑅) then we stop

the servos.

driveL = drive;

 driveR = drive;

 driveServos(driveL,driveR);

 if((countL > nL) && (countR > nR)) {

 driveServos(0.0,0.0);

 servosDetach();

 }

1.8 Moving on an Arc
We’ve already seen the maths for this, but let’s revisit it here.

The arrangement is shown in Fig.1.7 where the symbol 𝜃𝑅𝑜𝑏

refers to the rotation of the entire robot about its centre (in the

middle of its axle). The arc is specified by this angle and also

the radius of the curve. Remember the robot axle has length

2𝑎 as shown in the diagram.

The robot’s wheels travel the following distances when

traversing the arc,

∆𝑠𝐿 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏

∆𝑠𝑅 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏

Chapter 1 Robot Kinematics 15

The number of pulses is calculated by dividing the distances

travelled by the step size ∆𝑥. So, we get

𝑛𝐿 =
∆𝑠𝐿

∆𝑥
=

(𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏

∆𝑥

and a similar expression for 𝑛𝐿. All quantities on the right

are known, so it is easy to calculate the number of pulses for

each wheel.

There is one additional factor we need to take into account.

Not only is the right wheel making more steps, but it is also

moving faster. Since both wheels must start and stop at the

same time, the speeds are proportional to the number of

steps. So, we have where fwd represents some drive to the

servos,

𝑓𝑤𝑑𝑅

𝑓𝑤𝑑𝐿
=

𝑛𝑅

𝑛𝐿

The following code does all of this for us, where we are

asking the robot to make a 90-degree arc of radius 300 mm.

 desRadius = 300;

 desDegrees = 90;

 desTheta = desDegrees*(PI/180.0);

 nLf =(desRadius - axleLen/2.0)*desTheta/dx;

 nRf =(desRadius + axleLen/2.0)*desTheta/dx;

 nL = (unsigned long) nLf;

 nR = (unsigned long) nRf;

 fwdL = 20;

 fwdR = fwdL*nRf/nLf;

Robotics 16

1.9 Robot Actuators
Robots move using their actuators (motors). We can classify

actuators in several ways. First, we can consider how they

move through space; most actuators we have experienced use

rotation, which attached to wheels produce linear motion

through space (along a straight or along a curve). But there

are also pure linear actuators, which move in a straight line.

Rotational actuators may be placed in sub-classes; there are

dc-motors which when connected to a 5Volt source rotate

with a certain angular speed, there are servomotors where you

control their angular speed by giving them pulses of varying

widths, and finally there are stepper-motors which move

through a discrete angle when you give them a pulse. Stepper

motors are capable of very accurate (can move small

distances) and repeatable motion; they find application in

laser-cutters, 3D printers, photocopiers and in robotic

surgery.

Recent technology provides us with extended actuator

possibilities, one example is shape-memory alloy. Think of a

wire which can be long or short depending on its temperature;

send a current through it (to heat it up) and it could be short,

stop the current (it cools) and it will be long. So, you can

control its length electronically. Applications are found in

limb prosthetics.

1.10 Electro-mechanics of a Stepper Motor
The motor shaft is connected to an armature which rotates;

think of this as having small magnets attached. Surrounding

the armature are coils which produce a magnetic field when

driven by a current. Fig.1.8 shows a simple example. At the

top the armature is held in its position by the south pole coil

attracting the north pole on the armature. Then the coil south

pole is rotated clockwise, and a coil north pole is placed at the

top, so the armature will rotate 90 degrees then stop there. So,

steppers work by rotating a magnetic field around the

armature, dragging it around. Clearly the rotation occurs in

steps defined by the number of magnets.

Figure 1.8 Stepper motor starting one clockwise
step driven by magnetic attraction and repulsion

Chapter 1 Robot Kinematics 17

Our motors also have a gearbox which reduces the angle

moved, this results in one revolution having 2038 steps. The

angle of a single step (radians) is then

∆𝜃1 =
2𝜋

2038

which is about 0.0031 radians or 0.177 degrees, quite small.

The distance covered by a wheel of radius r for one step is

just

∆𝑠1 = 𝑟∆𝜃1

for our wheel of radius about 25mm this is around 0.08mm

which is quite a small distance. This raises the hope of being

able to control the position of a robot very accurately.

There are some limitations where this accuracy may not be

realizes. One is related not to the motor, but to the wheels

which may slip, especially if the motors are driven from rest

to a high angular speed; to avoid this speed ramping will be

used. Others are related to the motor, the motor may miss a

step, especially when its speed is changed dramatically;

ramping may help this. The other issue relates to driving two

motors at the same time to make the robot move forward in a

straight line. Assuming the following function is available

(where the arguments are steps to the left and right motors

respectively); compare the two coding solutions to get the

robot to move forwards 100 steps.

stepMotors(100,100); int i=0;

while(i<100) {

 stepMotors(1,1);

 i++;

}

The solution on the left will not work, since the internals of

the function stepMotors(…) cannot drive both motors at the

same time, and almost certainly drive one motor 100 steps

then the other motor 100 steps. So, the robot would waddle

forward in a series of arcs. While the same is true for the robot

Figure 1.9 Our stepper showing a few anti-
clockwise steps

Robotics 18

on the right, the waddle is limited to single steps and will be

barely noticeable.

1.11 Forward Motion in a Straight Line
This is straightforward; we must arrange two things, (i) both

left and right motors take the same number of steps, (ii) we

must drive them with the same speeds. The API has two

functions

setStepperSpeeds(speedL,speedR);

stepMotors(nL,nR);

where nL and nR are the numbers of steps sent to the left and

right motors. The calculation of these is straightforward; if

we want to drive the robot dist forward then we have

𝑛𝐿 =
𝑑𝑖𝑠𝑡

∆𝑥
, 𝑛𝑅 =

𝑑𝑖𝑠𝑡

∆𝑥
,

where ∆𝑥 (dx in code) is the distance travelled for one motor

step. Fig 1.10. summarizes this.

1.12 Motion on an Arc
This is a little more complicated to analyze, but the

implementation of the algorithm in code is really tricky and

requires some thought. Let’s say we want to move the robot

along an arc of radius R and angle ∆𝜃𝑟𝑜𝑏 in a clockwise

manner. We have seen something similar before; the

arrangement is shown in Fig.1.11. The left wheel moves

further than the right wheel, and since both wheels must

finish their journeys at the same time, the left wheel must

move proportionally faster.

The distances travelled (Fig.1.11 top) are calculated as usual;

for the left wheel we have

∆𝑠𝐿 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏 (1)

Figure 1.10 Motion on a straight line; same
speeds, same number of steps.

Chapter 1 Robot Kinematics 19

and for the right wheel

∆𝑠𝑅 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏 (2)

Therefore, using the relation

𝑛𝐿 =
∆𝑠𝐿

∆𝑥
 (3)

and an equivalent one for the right wheel, we find

𝑛𝐿 =
∆𝜃𝑅𝑜𝑏

∆𝑥
(𝑅 + 𝑎) (4)

and

𝑛𝐿 =
∆𝜃𝑅𝑜𝑏

∆𝑥
(𝑅 − 𝑎) (5)

Everything on the right side of these equations is known, so

we can compute the numbers of steps needed by left and

right motors.

As mentioned, both motors need to complete their rotations

at the same time, let’s call this time ∆𝑡. Since distance is

velocity time we have

∆𝑠𝐿 = 𝑣𝐿∆𝑡, ∆𝑠𝑅 = 𝑣𝑅∆𝑡

and dividing these

∆𝑠𝑅

∆𝑠𝐿
=

𝑣𝑅

𝑣𝐿
 (6)

and using expression (3) we have

𝑣𝑅

𝑣𝐿
=

𝑛𝑅

𝑛𝐿
 (7)

so, the speeds are in proportion to the number of steps taken,

in this case the right motor has a lower speed, agreeing with

Fig.1.11.

Figure 1.11 Driving on an arc: Top shows the
distances, bottom expresses these in number
of left and right steps.

Robotics 20

We need to use expressions (4,5, and 7) in our code. These

are used once to calculate the number of steps and the speeds

of both motors. The problem is, once we have these values,

how to use them to get the motors to turn correctly.

The approach we take (which is successful) is as follows. The

right wheel moves a shorter total distance than the left wheel.

So, when the right wheel has taken one step, we imagine that

the right wheel has taken a fractional step. Of course, it can’t

but we imagine it can. When the left wheel takes another step,

we imagine the right wheel as taken another fractional step.

At some time, the right wheel fractional steps will add up to

a whole step, so at this point we make the right wheel take a

step. How do we calculate the size of this imaginary step?

Well, it is simply the ratio

𝛽 =
𝑛𝑅

𝑛𝐿
 (8)

so, when the left motor has finished its 𝑛𝐿steps, the total steps

taken by the right motor is

𝛽𝑛𝐿 =
𝑛𝑅

𝑛𝐿
𝑛𝐿 (9)

which is just 𝑛𝑅, exactly what we want! Fig.1.12 shows this

algorithm expressed as a flow diagram.

One solution to coding this is shown below. This assumes

required step numbers and speeds have been computed. The

loop runs over the left steps, and the variable prepR (‘prepare

the right motor’) accumulates the fractional imaginary right

motor steps, beta since 𝑛𝐿 = 1 in (8). When prepR is greater

than one step, the right motor is stepped. Note when the loop

over the left steps is finished, there is a little check to see if

there is an outstanding step for the right motor.

Figure 1.12 Arc algorithm

Chapter 1 Robot Kinematics 21

 while (doneL < nL) { // --------

 stepMotors(1,0);

 doneL += 1;

 prepR += beta;

 if(prepR > 1.0) {

 stepMotors(0,1);

 doneR += 1;

 prepR -= 1.0;

 }

 } // End while -----------------

 // Check if any outstanding Right

 if (prepR > 0.5) {

 stepMotors(0,1);

 doneR += 1.0;

 prepR -= 1.0;

 }

The variables doneL and doneR count the steps actually

taken while nLand nR refer to the total steps to take. This

code will only work for clockwise turns, and needs to be

generalized for all arcs.

