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Figure 1.2. Wheel rotating with a change in 
angle 

Chapter 1 
Robot Kinematics 

1.1 A brief Introduction 
Kinematics is the study of movement (well almost) so in this 

chapter we are looking at the principles of robot movement, 

for our 2-wheeled differential drive robot. The explanation is 

mathematical; this is necessary for us to write code to get the 

robot moving. The most important expressions are 

highlighted.  So how does a wheeled robot move? Simply by 

driving its wheels. If you drive both wheels at the same 

angular speed, then the robot moves forward. If you drive the 

left wheel faster, then the robot will arc to the right. Driving 

both wheels at the same speed, but in opposite directions, will 

make the robot spin about its axis. 

1.2 Linear and Angular Velocities 
Let’s see how wheels work. Fig. 1.1 shows a wheel 

completing a full revolution. Imagine the type is coated with 

paint, so as the wheel rotates it paints a nice line on the 

surface. How long is this line? Simply the circumference of 

the wheel. 

Now let’s do a quick calculation. I guess you will remember 

the expression for the circumference of a circle radius r. This 

is of course 2𝜋𝑟. So, if we have a wheel of radius 33mm then 

one rotation will shift the robot a distance (2)(3.1415)(33) = 

207mm. 

And now for some maths. If one rotation gives a distance of 

2𝜋𝑟 then half a rotation will give half of this distance, but 

what about if the angle of rotation is ∆𝜃? (Here the symbol ∆ 

means a change and 𝜃 is the angle. Well, the arc of the circle 

corresponding to the angle ∆𝜃 is just 

∆𝑠 = 𝑟∆𝜃                   (1) 

Figure 1.1. Rotating wheel leaving a track of 
blue paint on the surface 
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where the angle is in radians (more on that later). So, this is 

the length of the line painted by the robot, and is the distance 

moved forward, look at Fig.1.2. 

Now let’s think about the robot’s speed in mm/sec. Speed is 

the distance moved ∆𝑠 in a time interval ∆𝑡. Here’s the 

expression for speed. 

𝑣 =
∆𝑠

∆𝑡
                (2) 

Continuing with our example, if the robot wheels make one 

revolution in 2 seconds, then the robot speed is 

𝑣 =
2𝜋𝑟

2
=

207

2
= 103.5 𝑚𝑚/𝑠𝑒𝑐 

Try to imagine what that means. The symbol for speed is 𝑣 

since what we are really talking about is velocity, speed in a 

particular direction (forward or backward).  

But robots move by turning their wheel with their 

servomotors and our computer programs must provide drive 

to the motors to make them rotate. To make a servomotor 

rotate, we must give it a series of ‘pulses’ where the pulse 

width determines the rotational speed. For the robot we shall 

be using, the ‘Parallax Activity Bot /BoE Bot’ the 

relationship between pulse width and speed is shown in the 

diagram below. The points show real measurements, and the  
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red line has been placed to capture the most useful part of the 

experimental curve, where speed is proportional to pulse 

width. You can see that with a pulse width of 1500 µs 

(microseconds) the motor does not rotate. Therefore, in our 

code (and in our thinking) we shall define a quantity drive 

relative to this 1500. So, a drive of 50 will create a rotational 

velocity of around 30 rpm, and a drive of -50 will rotate the 

motor at this rpm, but in the opposite direction. 

It’s easy to get a relationship between drive and rpm from the 

red line above; here we find this is 

𝑑𝑟𝑖𝑣𝑒 =  
50.0

30.0
𝑟𝑝𝑚         (3) 

In our code, you will see the variables driveL and driveR 

which are, of course, the drives sent to the left and right 

servomotors. 

Now we need to understand how the values of driveL and 

driveR will determine the robot’s speed; let’s assume these 

are the same, so the robot will move forwards (we’ll look at 

other possibilities later). If we stick expression (1) for the 

distance gone when the wheel rotates through an angle, into 

expression (2) which is the definition for linear robot velocity 

moving forward, we get 

𝑣 =
∆𝑠

∆𝑡
=  

𝑟∆𝜃

∆𝑡
= 𝑟 

∆𝜃

∆𝑡
              

Here ∆𝜃 ∆𝑡⁄  tells us how fast the wheel angle changes with 

time, so this is the angular velocity of the wheel; we give this 

the symbol 𝜔 so we have a fundamental expression 

𝑣 = 𝜔𝑟          (4) 

This makes sense; if the wheel radius r is increased, then the 

linear speed v is increased, and if the angular velocity 𝜔 is 

increased (the wheel rotates faster) then the linear speed is 

increased. All seems good, and it is. There may be a 

conceptual stumbling block, however, it’s due to the units of 

angular velocity 𝜔. The angle change in (1) is measured in 
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radians (in one revolution, there are 360 degrees which is 2𝜋 

radians, a little over 6). So, we need to connect angular 

velocity in radians/sec to angular velocity in rpm, so we can 

use the above drive graph. 

 

 

Let’s say the wheels are rotating at n rpm, i.e., 𝑛𝑟𝑝𝑚. 

Therefore, the revs per second is 

𝑛𝑟𝑝𝑠 =
𝑛𝑟𝑝𝑚

60
 

Each rotation the wheel rotates 2𝜋 radians, therefore the 

radians per second (𝜔) is just 

𝜔 = 2𝜋
𝑛𝑟𝑝𝑚

60
=

2𝜋

60
𝑛𝑟𝑝𝑚 

i.e., 

𝜔 =
2𝜋

60
𝑛𝑟𝑝𝑚           (5) 

Let’s work through an example how we would use this maths 

to make a robot move forwards a desired distance, in a desired 

time. 

Help! What are radians? 

Think of a wheel rotating once, through 360 

degrees. We know the distance gone is the 

circumference of the wheel 2𝜋𝑟. Now 

expression (1) tells us that this distance is 𝑟∆𝜃. 

So, we have 

2𝜋𝑟 =  𝑟∆𝜃 

and cancelling the r gives us 

∆𝜃 = 2𝜋 

therefore, in a circle, there are 2𝜋 radians. 
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Let’s take the case of driving the robot a desired distance of 

80mm in a desired time of 2 seconds, a speed of 40 mm/s. 

We shall revisit this below when we discuss how to code our 

robot. 

1.3 Movement on an arc 
Have a look at Fig.1.3, at the bottom you will see the robot. 

The length of its axle, connecting its wheels is 2𝑎 and for the 

Parallax robot we are using, this is 104.0 mm, so we have a 

= 52 mm. 

The diagram shows that the centre of the robot (between the 

wheels) moves along an arc of radius R. So the left wheel 

moves along an arc of radius (𝑅 − 𝑎) and the right wheel 

moves along a larger arc of radius (𝑅 + 𝑎). Clearly the right 

wheel is moving faster than the left. The robot’s pose 

changes, it started off moving North, and it ends up moving 

Northwest, having changed its bearing by an angle 𝜃𝑅𝑜𝑏. The 

subscript Rob reminds us we are thinking about the entire 

robot, rather than its wheels. 

To understand the maths which follows, we apply the 

relationship  
∆𝑠 = 𝑟∆𝜃 used above. So, for the left wheel we have 

∆𝑠𝐿 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏                    (6𝑎) 

and for the right wheel 

Figure 1.2. Robot moving on an arc. 
Distance a is between each wheel and the 
robot centre. 

 

𝑣 =
∆𝑠

∆𝑡
         (2) 

 

 
v = 80/2 = 40 mm/sec 

 

𝜔 =
𝑣

𝑟
      from (4) 

 

 
𝜔=40/33.0 = 1.21 rad/sec 

 

𝑛𝑟𝑝𝑚 =
60

2𝜋
 𝜔  from (5) 

 

 
𝑛𝑟𝑝𝑚= (60*1.21)/6.28 = 12 rpm 

  
drive = (50.0/30.0)*12 = 20 
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∆𝑠𝑅 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏                  (6𝑏) 

Now let’s imagine that the robot takes a certain time interval 

∆𝑡 to complete its trajectory along the arc. To find the robot 

wheel speeds, we must divide distance gone by each wheel 

by this time interval, see expression (2). So, we get for the 

left wheel 

𝑣𝐿 =
∆𝑠𝐿

∆𝑡
= (𝑅 − 𝑎)

∆𝜃𝑅𝑜𝑏

∆𝑡
                 (7𝑎) 

and for the right wheel 

𝑣𝑅 =
∆𝑠𝑅

∆𝑡
= (𝑅 + 𝑎)

∆𝜃𝑅𝑜𝑏

∆𝑡
              (7𝑏) 

This is fine, but these expressions are not really telling us 

much. So, we must go forwards a bit. Remember the 

expression (1) connecting wheel distance and angle. For the 

left and right wheels these become, since both wheels have 

the same radius. 

∆𝑠𝐿 = 𝑟∆𝜃𝐿 ,    𝑎𝑛𝑑    ∆𝑠𝑅 = 𝑟∆𝜃𝑅 

and putting these into expressions (7a) and (7b) we find 

𝑟 (
∆𝜃𝐿

∆𝑡
) = (𝑅 − 𝑎) (

∆𝜃𝑅𝑜𝑏

∆𝑡
)          (8𝑎)          

and 

𝑟 (
∆𝜃𝑅

∆𝑡
) = (𝑅 + 𝑎) (

∆𝜃𝑅𝑜𝑏

∆𝑡
)          (8𝑏)          

I’ve stuck in some brackets here, where changes in angles are 

divided by a corresponding change in time. These are angular 

velocities, speeds of rotation. 

The symbol for angular velocity is omega 𝜔 (lower case) or 

Ω (upper case). Lower case 𝜔 is the angular velocity of the 

wheels and upper case Ω is the angular velocity of the robot 

body, when viewed from above; this is just the rotation speed 

of the robot. 

So, we can rewrite equations (8) like this 
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𝑟𝜔𝐿 = (𝑅 − 𝑎)Ω𝑅𝑜𝑏 

𝑟𝜔𝑅 = (𝑅 + 𝑎)Ω𝑅𝑜𝑏 

therefore 

𝜔𝐿 =
(𝑅 − 𝑎)Ω𝑅𝑜𝑏

𝑟
               (9𝑎) 

𝜔𝑅 =
(𝑅 + 𝑎)Ω𝑅𝑜𝑏

𝑟
               (9𝑏) 

These are very useful expressions. As with all expressions, 

think of the stuff on the right of the = sign as an input to a 

computation, what we want to calculate, and the stuff on the 

left is what we have to code to make this happen. So, if we 

want the robot to go around an arc of radius R with an angular 

velocity Ω𝑅𝑜𝑏 then we have to make the motors rotate with 

angular velocities 𝜔𝐿 and 𝜔𝑅.  

1.4 Special Cases 
There are two special cases of the maths in expressions (9). 

First, when the robot is moving straight, then we can write 

𝑅 → ∞ so we can neglect a in the expressions, and R divides 

out. You can see this by calculating the ratio of the wheel 

omega’s 

𝜔𝐿

𝜔𝑅
=

(𝑅 − 𝑎)

(𝑅 + 𝑎)
                  (10) 

where the ratio becomes R/R = 1 which tells us that the 

omegas are the same, i.e., both wheels rotate at the same 

speed.  

The other special case is when 𝑅 = 0, this is where the robot 

rotates about its centre. Putting this into expressions (10) we 

find 

𝜔𝐿

𝜔𝑅
= −1              (11) 

so, the omegas are equal and opposite! 
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A Worked Example 
Let’s say we want our robot to travel along an arc of radius 

300mm and change its pose by 45 degrees, and it does this in 

2 seconds, see Fig. 1.4.  

The angle expressed in radians is 45𝜋/180 = 0.785rad. The 

angular velocity of the robot Ω𝑅𝑜𝑏 is 0.785/2.0 = 0.393 

rad/sec. 

Since a = 52mm for the Parallax robot and our arc has a radius 

of 300 mm, plugging these into expressions (8) gives us 

𝜔𝐿 =
(300 − 52)0.393

33
,     𝜔𝑅 =

(300 + 52)0.393

33
 

and so, we calculate 

𝜔𝐿 = 2.85 𝑟𝑎𝑑 𝑠⁄ , 𝜔𝑅 = 4.19 𝑟𝑎𝑑 𝑠⁄      

Now we need to convert these omegas to rpms. Since an 

omega of  2𝜋 rad/s corresponds to 1 rev/sec, then 1 rad/s 

corresponds to 1 2𝜋⁄  rev/sec. Then 𝜔 rad/s corresponds to 

𝜔 2𝜋⁄  rev/sec, and therefore to  60𝜔 2𝜋⁄  rpm. To get revs per 

second we divide the omegas by 2𝜋 which gives us 

left 0.45 revs/sec right 0.67 revs/sec 
 

and to get the revs/min we multiply by 60 

left 27 revs/min right 40.2 
revs/min 

 

and using the expression (3) for drive, we finally have 

left drive 45 right drive 67 
 

which are the drive signals we send to our motors.  

All of these calculations are done in our Arduino code. The 

purpose of this worked example is simply to explain what the 

code actually does. 

Figure 1.3 Worked example. The robot 
rotates 45 degs on an arc 300mm and 
takes 2 seconds. 
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1.5 How to Code a Real Robot 
We need to get the robot to move forward a certain distance 

we specify or rotate an angle we specify or rotate on an arc. 

In our code, we have to specify drives which will make the 

robot move as we want, then send these drives to the servos. 

Here’s a code snippet which gets the robot moving forwards 

 
driveL = 30; 

driveR = 30; 

driveServos(driveL,driveR); 

 

 

This code will get the robot moving (for ever) but we would 

rather like to tell the robot how far to move and with what 

speed. So, here’s some code to get the robot moving forward 

for a specified distance (in mm) over a specified time. We 

relate the code to the corresponding maths. All the variables 

have been declared for you in the code templates. 

desDist = 80; 

desTime = 2.0; 
 

desSpeed = desDist/desTime; expression (2) 

omega = desSpeed/wheelRad; from expression (4) 

rpm = (60/(2*PI))*omega; from expression (5) 

driveL = (50.0/30.0)*rpm; expression (3) 

driveR = driveL;  

driveServos(driveL,driveR);  

delayTime = (int)(desTime*1000)  

delay(delayTime);  

driveServos(0.0,0.0);  

 

The last three lines deserve some comment. The lines before 

them set the motor drives and therefore their speeds. These 
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last three lines specify how long the servos must spin. So we 

calculate the delayTime in milliseconds from our desTime 

(in seconds), and pass it to the delay(…) function which 

suspends the MPU for this time. Then, we drive the servos 

with driveL = 0.0 and driveR = 0.0 which will make them 

stop. So, the final result is that the robot will move 80mm 

forwards and it will take 2secs to do this, both values we 

specify. 

Now the maths is perfect, and the code is perfect (they are 

both perfect abstract systems of thinking), but when you get 

the robot to execute this code, it will not move 80mm 

forwards, it will be more, or it will be less. Why? Because the 

robot is not abstract, it is not a simulation, it is really 

embodied in the real world. Think of its motors, their 

datasheet may specify their ‘accuracy’ as 10%. This means 

that if you ask them to rotate with an angular velocity of 10 

rpm, they will rotate with anywhere between 9 and 11 rpm. 

In the worst-case scenario, the left motor could rotate at 9 rpm 

and the right at 11 rpm; the robot would not go straight 

forward but arc to the left! Also, we need to know the wheel 

radius, and so we measure it, but our measurements are 

subject to errors. And, also the relationship between drive 

and rpm may not be the one we presented earlier, each motor 

is different. Looking at the drive-rpm curve again 

(reproduced below) we see a real issue. 
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If we look at pulse Width 1500 (drive = 0) we see that 

increasing the drive to about 20 does not make the motor turn! 

There is a ‘dead band’. This means that we cannot use small 

forward drives or motor speeds. 

So, back to our problem. There are two ways to cope with this 

problem: The first relies on direct observation of the robot, 

and measurement of how it moves. Let’s say we ask the robot 

to move 80mm and we measure how far it moves, 90mm; it’s 

gone too far. So we could reduce the wheel velocity omega, 

but we know this is dangerous, since if omega is made too 

small, then the motor will not turn.  

There is another way to make the robot travel less far; we can 

reduce the amount of time we drive the motors. So, we change 

the desTime 

correctionFactor = desDist/actualDist;   

desTime = desTime*correctionFactor; 

 

It is important that we make this change at the appropriate 

place in the code, it must not be made before we calculate the 

omega’s since they depend on the desTime. Here’s where to 

put the correction, so that it only affects the delayTime which 

tells the motors how long to rotate. 

correctionFactor = desDist/actualDist;   

 

desTime = desTime*correctionFactor; 

delayTime = (int)(desTime*1000) 

delay(delayTime); 

driveServos(0.0,0.0); 

 

1.6 Wheel encoder technology 
Here we shall look at improving our work on movement using 

dead reckoning by employing a robot proprioceptive sensor 

which measures the position of the wheels. The sensing 

device is called a ‘wheel encoder’, see Fig.1.5. As the wheel 

rotates, IRed light from the transmitter shown at the top 

Figure 1.4 Wheel encoder: Top the IRed 
transmitter and receiver measures reflections 
from the spokes (bottom) 
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passes through slots in the wheel, shown at the bottom. When 

the light hits a spoke, it is reflected to the IRed sensor and 

produces a pulse sent to the Arduino. So, as the wheel rotates, 

it sends a series of pulses to the Arduino shown in the diagram 

below.  

 

The pulses arrive at Arduino pins especially configured to 

receive hardware ‘interrupts’ and when a pulse arrives, the 

code breaks out of its current execution place and jumps to an 

Interrupt Service Routine (ISR) and execution continues 

there. When the ISR is complete, then execution returns to 

the place where it was forced to break out from. Each wheel 

has an interrupt, the ISR for the right wheel is shown below. 

void ISRoutineR() { 

  countR++; 

} 

 

You can see this ISR increments the value of countR i.e., 

every time the encoder sends a pulse, this value is 

incremented, so the code knows how many steps the wheel 

has rotated. Here’s an overview of how interrupts work. First 

the hardware pin is attached to the ISR, and the interrupt is 

configured to respond to a CHANGE (i.e., a rising or a falling 

pulse edge. This code is in setup(); 

attachInterrupt(digitalPinToInterrupt(EncoderR

_pin),ISRoutineR,CHANGE); 

 

Here’s what happens when the code is executing in loop() and 

a pulse arrives. Code execution is shown by the green arrow 

with a blob. When the interrupt is received, execution 

transfers execution returns to where it left off. It is important 
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Figure 1.5 Angle shown between pair of rising 

and falling pulse edges 

to understand that this occurs at the level of hardware 

instructions, not lines of code. It is extremely fast. 

 

Now we need to understand how many pulses are received in 

one wheel revolution, and therefore how far the wheel moves 

between pulses. There are 32 spokes in the wheel, and since 

the ISR responds to both rising and falling edges, then there 

are 64 pulses per wheel revolution. The angle rotated between 

pulses is a little under 6 degrees, see Fig.1.6. But how far has 

the wheel moved? We know that 

∆𝑠 = 𝑟∆𝜃 

so for a wheel radius of 33 mm, we have, calculating using 

radians 

∆𝑠 = 33
2𝜋

64
 

 

which works out to be 3.24 mm. This is the accuracy of any 

measurement of wheel travel we can make since it is the 

smallest step in distance we can possibly know. 

1.7 Moving on a straight line of given 

distance. 
Let’s say we want the robot to move a desired distance. How 

do we use wheel encoders to make this happen? First we need 

to calculate the number of steps required, which is the number 
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Figure 1.7 Geometry for moving on a curve 
with specified angle and radius. 

of pulses the encoders receive, setting countL and countR. 

The number of pulses is simply the distance gone divided by 

the step size, 

𝑛𝐿 = 𝑛𝑅 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑖𝑠𝑡

∆𝑥
 

For example, to get the robot to move 300 mm, we need to 

count 300/3.24 = 93 pulses, approx. Here’s some example 

code which will do the job. We set the motor drives and 

switch on the servos. Then we monitor the actual counts and 

when they exceed the counts we need (𝑛𝐿 = 𝑛𝑅) then we stop 

the servos. 

 

driveL = drive; 

 driveR = drive; 

 driveServos(driveL,driveR);  

 

 if((countL > nL) && (countR > nR))  { 

   driveServos(0.0,0.0); 

   servosDetach(); 

 } 

 

1.8 Moving on an Arc 
We’ve already seen the maths for this, but let’s revisit it here. 

The arrangement is shown in Fig.1.7 where the symbol 𝜃𝑅𝑜𝑏 

refers to the rotation of the entire robot about its centre (in the 

middle of its axle). The arc is specified by this angle and also 

the radius of the curve. Remember the robot axle has length 

2𝑎 as shown in the diagram. 

 

The robot’s wheels travel the following distances when 

traversing the arc, 

∆𝑠𝐿 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏 

∆𝑠𝑅 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏 
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The number of pulses is calculated by dividing the distances 

travelled by the step size ∆𝑥. So, we get 

𝑛𝐿 =
∆𝑠𝐿

∆𝑥
=

(𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏

∆𝑥
 

and a similar expression for 𝑛𝐿. All quantities on the right 

are known, so it is easy to calculate the number of pulses for 

each wheel. 

There is one additional factor we need to take into account. 

Not only is the right wheel making more steps, but it is also 

moving faster. Since both wheels must start and stop at the 

same time, the speeds are proportional to the number of 

steps. So, we have where fwd represents some drive to the 

servos, 

𝑓𝑤𝑑𝑅

𝑓𝑤𝑑𝐿
=

𝑛𝑅

𝑛𝐿
 

The following code does all of this for us, where we are 

asking the robot to make a 90-degree arc of radius 300 mm. 

 

   

  desRadius = 300; 

  desDegrees = 90; 

  desTheta = desDegrees*(PI/180.0); 

 

  nLf =(desRadius - axleLen/2.0)*desTheta/dx; 

  nRf =(desRadius + axleLen/2.0)*desTheta/dx;  

   

  nL = (unsigned long) nLf; 

  nR = (unsigned long) nRf; 

  fwdL = 20; 

  fwdR = fwdL*nRf/nLf; 
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1.9 Robot Actuators 
Robots move using their actuators (motors). We can classify 

actuators in several ways. First, we can consider how they 

move through space; most actuators we have experienced use 

rotation, which attached to wheels produce linear motion 

through space (along a straight or along a curve). But there 

are also pure linear actuators, which move in a straight line. 

Rotational actuators may be placed in sub-classes; there are 

dc-motors which when connected to a 5Volt source rotate 

with a certain angular speed, there are servomotors where you 

control their angular speed by giving them pulses of varying 

widths, and finally there are stepper-motors which move 

through a discrete angle when you give them a pulse. Stepper 

motors are capable of very accurate (can move small 

distances) and repeatable motion; they find application in 

laser-cutters, 3D printers, photocopiers and in robotic 

surgery. 

Recent technology provides us with extended actuator 

possibilities, one example is shape-memory alloy. Think of a 

wire which can be long or short depending on its temperature; 

send a current through it (to heat it up) and it could be short, 

stop the current (it cools) and it will be long. So, you can 

control its length electronically. Applications are found in 

limb prosthetics. 

1.10 Electro-mechanics of a Stepper Motor 
The motor shaft is connected to an armature which rotates; 

think of this as having small magnets attached. Surrounding 

the armature are coils which produce a magnetic field when 

driven by a current. Fig.1.8 shows a simple example. At the 

top the armature is held in its position by the south pole coil 

attracting the north pole on the armature. Then the coil south 

pole is rotated clockwise, and a coil north pole is placed at the 

top, so the armature will rotate 90 degrees then stop there. So, 

steppers work by rotating a magnetic field around the 

armature, dragging it around. Clearly the rotation occurs in 

steps defined by the number of magnets. 

Figure 1.8 Stepper motor starting one clockwise 
step driven by magnetic attraction and repulsion 



Chapter 1 Robot Kinematics      17 
 

Our motors also have a gearbox which reduces the angle 

moved, this results in one revolution having 2038 steps. The 

angle of a single step (radians) is then 

∆𝜃1 =
2𝜋

2038
 

which is about 0.0031 radians or 0.177 degrees, quite small. 

The distance covered by a wheel of radius r for one step is 

just 

∆𝑠1 = 𝑟∆𝜃1 

for our wheel of radius about 25mm this is around 0.08mm 

which is quite a small distance. This raises the hope of being 

able to control the position of a robot very accurately. 

There are some limitations where this accuracy may not be 

realizes. One is related not to the motor, but to the wheels 

which may slip, especially if the motors are driven from rest 

to a high angular speed; to avoid this speed ramping will be 

used. Others are related to the motor, the motor may miss a 

step, especially when its speed is changed dramatically; 

ramping may help this. The other issue relates to driving two 

motors at the same time to make the robot move forward in a 

straight line. Assuming the following function is available 

(where the arguments are steps to the left and right motors 

respectively); compare the two coding solutions to get the 

robot to move forwards 100 steps. 

stepMotors(100,100); int i=0; 

while(i<100) { 

   stepMotors(1,1); 

   i++; 

} 

 

The solution on the left will not work, since the internals of 

the function stepMotors(…) cannot drive both motors at the 

same time, and almost certainly drive one motor 100 steps 

then the other motor 100 steps. So, the robot would waddle 

forward in a series of arcs. While the same is true for the robot 

Figure 1.9 Our stepper showing a few anti-
clockwise steps 
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on the right, the waddle is limited to single steps and will be 

barely noticeable.  

1.11 Forward Motion in a Straight Line 
This is straightforward; we must arrange two things, (i) both 

left and right motors take the same number of steps, (ii) we 

must drive them with the same speeds. The API has two 

functions 

 

setStepperSpeeds(speedL,speedR); 

 

stepMotors(nL,nR); 

 

 

where nL and nR are the numbers of steps sent to the left and 

right motors. The calculation of these is straightforward; if 

we want to drive the robot dist forward then we have 

𝑛𝐿 =
𝑑𝑖𝑠𝑡

∆𝑥
,              𝑛𝑅 =

𝑑𝑖𝑠𝑡

∆𝑥
, 

where ∆𝑥 (dx in code) is the distance travelled for one motor 

step. Fig 1.10. summarizes this. 

1.12 Motion on an Arc 
This is a little more complicated to analyze, but the 

implementation of the algorithm in code is really tricky and 

requires some thought. Let’s say we want to move the robot 

along an arc of radius R and angle ∆𝜃𝑟𝑜𝑏 in a clockwise 

manner. We have seen something similar before; the 

arrangement is shown in Fig.1.11. The left wheel moves 

further than the right wheel, and since both wheels must 

finish their journeys at the same time, the left wheel must 

move proportionally faster. 

The distances travelled (Fig.1.11 top) are calculated as usual; 

for the left wheel we have 

∆𝑠𝐿 = (𝑅 + 𝑎)∆𝜃𝑅𝑜𝑏         (1)                     

Figure 1.10 Motion on a straight line; same 
speeds, same number of steps. 
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and for the right wheel 

∆𝑠𝑅 = (𝑅 − 𝑎)∆𝜃𝑅𝑜𝑏       (2)                   

 

Therefore, using the relation 

𝑛𝐿 =
∆𝑠𝐿

∆𝑥
          (3) 

and an equivalent one for the right wheel, we find 

𝑛𝐿 =
∆𝜃𝑅𝑜𝑏

∆𝑥
(𝑅 + 𝑎)     (4) 

and 

𝑛𝐿 =
∆𝜃𝑅𝑜𝑏

∆𝑥
(𝑅 − 𝑎)     (5) 

Everything on the right side of these equations is known, so 

we can compute the numbers of steps needed by left and 

right motors. 

As mentioned, both motors need to complete their rotations 

at the same time, let’s call this time ∆𝑡. Since distance is 

velocity time we have 

∆𝑠𝐿 = 𝑣𝐿∆𝑡,         ∆𝑠𝑅 = 𝑣𝑅∆𝑡 

and dividing these 

∆𝑠𝑅

∆𝑠𝐿
=

𝑣𝑅

𝑣𝐿
        (6) 

and using expression (3) we have 

𝑣𝑅

𝑣𝐿
=

𝑛𝑅

𝑛𝐿
       (7) 

 

so, the speeds are in proportion to the number of steps taken, 

in this case the right motor has a lower speed, agreeing with 

Fig.1.11. 

Figure 1.11 Driving on an arc: Top shows the 
distances, bottom expresses these in number 
of left and right steps. 
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We need to use expressions (4,5, and 7) in our code. These 

are used once to calculate the number of steps and the speeds 

of both motors. The problem is, once we have these values, 

how to use them to get the motors to turn correctly. 

The approach we take (which is successful) is as follows. The 

right wheel moves a shorter total distance than the left wheel. 

So, when the right wheel has taken one step, we imagine that 

the right wheel has taken a fractional step. Of course, it can’t 

but we imagine it can. When the left wheel takes another step, 

we imagine the right wheel as taken another fractional step. 

At some time, the right wheel fractional steps will add up to 

a whole step, so at this point we make the right wheel take a 

step. How do we calculate the size of this imaginary step? 

Well, it is simply the ratio 

𝛽 =
𝑛𝑅

𝑛𝐿
       (8) 

so, when the left motor has finished its 𝑛𝐿steps, the total steps 

taken by the right motor is 

𝛽𝑛𝐿 =
𝑛𝑅

𝑛𝐿
𝑛𝐿     (9) 

which is just 𝑛𝑅, exactly what we want! Fig.1.12 shows this 

algorithm expressed as a flow diagram. 

One solution to coding this is shown below. This assumes 

required step numbers and speeds have been computed. The 

loop runs over the left steps, and the variable prepR (‘prepare 

the right motor’) accumulates the fractional imaginary right 

motor steps, beta since 𝑛𝐿 = 1 in (8). When prepR is greater 

than one step, the right motor is stepped. Note when the loop 

over the left steps is finished, there is a little check to see if 

there is an outstanding step for the right motor. 

 

 

 

Figure 1.12 Arc algorithm 
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  while (doneL < nL) {  // -------- 

       

    stepMotors(1,0); 

    doneL += 1; 

    prepR += beta; 

     

    if(prepR > 1.0) { 

        stepMotors(0,1); 

        doneR += 1; 

        prepR -= 1.0;   

    } 

  

  } // End while ----------------- 

 

  // Check if any outstanding Right 

  if (prepR > 0.5) { 

    stepMotors(0,1); 

    doneR += 1.0; 

    prepR -= 1.0; 

  } 

 

 

The variables doneL and doneR count the steps actually 

taken while nLand nR refer to the total steps to take. This 

code will only work for clockwise turns, and needs to be 

generalized for all arcs. 

 

 

 

 

 

 


