
Comp3402 Synthesizing and Simulating CPU2S
C.B.Price January 2024

Purpose To apply our understanding of digital circuit synthesis using VHDL to a synthesis of our own
CPU

Files Required Summary of VHDL syntax you need can be found here.
ILO Contribution LO 5
Send to Me nix
Homework Read chapter 14

Structure of CPU2S
Here is the complete CPU structure showing the components we shall synthesize using VHDL.

Section A. Synthesizing and Simulating the CPU2S Components

For each of the following components you will

• Complete the component VHDL code template.

• Check your component code using the testbench provided.

Please note, words in bold are the names of signals in each Component.

Here is a list of Design Sources you will find

• ALU Arithmetic Logic Unit. Does adds,

subtracts and other maths ops.

• Accumulator. 16-bit register, gets its

input from ALU, outputs onto dbus2.

• muXA/B/C. Multiplexers (switches)

selects one of two inputs according to

selMuxA/B/C signal.

• IP Instruction pointer. Counter that

starts at 0 and increases by 1 each

clock. Used to step through memory

• IR Instruction Register, 16-bits. Used

to hold current encoded instruction.

• RAM 32 words of 16 bits.

• InPt 16-bit input port

• OutPt 16-bit output port

• abus 16-bit address bus

• dbus1 data bus from memory/InPt

upwards

• dbus2 databus downward into

memory/OutPt

Also, here are the associated Simulation Sources (Test-benches). You have to select the one which belongs to your

current Design Source. Here’s how. Say you want to use mux_tb. Right click this line and then choose

 from the dialogue box.

1.

The MUX

Here is a MUX. It has two inputs InA and InB and one output. There is also a selection input, sel

The MUX output op should be inA when sel is high otherwise, it should be inB.

(a) Open up the file ISE_mux.vhd and code this behaviour. Note we are not in a sequential process block, so
we cannot use if-then-else. Instead we must use a when … else. Synthesize the MUX.

(b) Select the testbench file ISE_mux_tb and check the behaviour of your MUX.

2.

Registers

Registers are like D-flipflops. You remember, the input only gets through to the output at the rising edge of a
clock pulse. In fact our 16-bit registers can be thought of as 16 D-flipflops in parallel, though we won’t code
that, but let Vivado do the work for us.

So here’s a register with input and output and a clock signal

(a) Open up the file ISE_reg.vhd and code the required behaviour. You may want to look at your D-flipflop
code. The only real difference is that here data_in and data_out are 16-bit wide, they are declared as logic
vectors. Run Synthesis.

(b) Select the testbench IDE_reg_tb.vhd and run the simulation. You’ll probably get some UUUU which means
undefined logic level. Probably a consequence of a stand-alone test.

3.

Input Port

The input port is designed to capture external data and feed it into the CPU, it is 16-bits wide, but it is not a
register. It only passes its input through to its output when a control signal is high. The control signal is shown
in red and means ‘output enable Input Port’.

(a) Open up the file ISE_InOutPort.vhd. You must add a line or two of code to obtain the desired behaviour.
This line will start with data_out <= to assign a value to the output signals.

The Port output data_out should be data_in when load is high. In all other cases it should be low. There is no
process block, so you will have to use the good old when … else construct. To assign a value of zero then use
the syntax X”0000” which specifies a 16-bit hexadecimal value of 0. Alternatively you could write
“0000000000000000”.

There is another way of coding this alternative. Here it is abstractly. I guess you can work out what it means.

out <= in when (condition) else (others => ‘0’)

(b) Select the testbench ISE_IOPort.vhd and test your synthesized circuit.

4.

The ALU

Here’s the ALU which has two inputs and also a control signal selALUf which selects the function the ALU is
instructed to perform.

(a) Code up the ALU functionality, using the table of what the op will be according to the sel_ALUf signal
which directs the ALU what to do. You’ll need a chain of when … else … when

sel_ALUf = op

“001” inB

“010” inB + 1

“011” inA + inB

“100” inA - inB

after your final else you should probably include the following to catch any user programming errors:
else (others => ‘0’); The table shows that our ALU has a limited set of arithmetic operations; the last two are
add and subtract. The first is a ‘pass-through’ mode on inB and the second increments inB. You’ll understand
these when we assemble the entire CPU.

(b) In addition to the line op <= … you will also need to complete the line zero <= … This is the ‘zero flag’ which
is used in branch instructions. The zero flag is set to ‘1’ when inA is zero, else the flag is ‘0’.

(c) Pull up the testbench ISE_alu_tb.vhd and check out your synthesized circuit.

5.

Memory – RAM

This needs thought, concentration, a southerly wind, and faith.
[HINT1] The code in chapter 13 page 14 will help, but this is certainly not the whole story.
See also Chapter 14.6.3.

The solution is best expressed through this flow diagram,

Section B. Programming our CPU2S

This will use the NoC_CPU2S file where all the individual components have been assembled and connected. You will

only need to change the compRAM component.

1.

A First Program

Let’s investigate a program to input a number (could come from switches), then add a number from memory,
then output the number (could go to LEDs). Here’s the program

IN 8000 Input into ACC

ADD 11 2011 Add data from memory address 11 (hex) to the ACC

OUT 9000 Send data from ACC to the output port

HLT 7000 Halt processing.

The left shows the mnemonics, the right shows the opcodes you must type into RAM code-segment. Open the
ISE_RAM.vhd design source, and you’ll see the code-segment

(a) Replace the first 4 rows with the opcodes for the program. Do not add or delete rows. So the first row
will become X”8000”,

You can find the data segment further down; it looks like this.

So your instruction ADD 11 will get the data at address 11 (hex) which is 17 (dec). That’s the X“0003” on line
45.

(b) Synthesize your design.

(c) Run the testbench NoC_CPU2S_tb_micro and you’ll get a waveform. Your job is to interpret this.
Remember the program does an input into ACC, then adds a number to ACC then outputs the ACC to the
output port. I suggest you take a snip of the waveform, put it into a DrawCanvas in Word and annotate the
canvas.

(d) Here’s some basic checks

(i) Check the instruction pointer IP increments 0, 1, 2, 3, …
(ii) Check when each instruction is loaded into the instruction register IR and add the instruction mnemonic
alongside the op-code in the IR.

(e) Now let’s follow the data. We shall concentrate on the accumulator ACC since this is where inputs, outputs
and the results of ALU operations are stored. Remember the rising edge of the clk is when data is input into
the ACC.

(i) Find out the value of the data on the input port.
(ii) Find out then this is loaded into the ACC. Label the appropriate rising clock edge.

(iii) Look for the ADD 11 instruction in the IR.
(iv) Find out when this is loaded into the ACC. Label the appropriate rising clock edge.

(v) Find out when the result is sent to the output port.
(vi) Label the appropriate rising clock edge. (Remember the output port, like the accumulator inputs its data
only on a rising clock edge.

2.

Optional Programs

Here’s the full instruction set. The ‘aa’ in the opcode column is an address in hex.

LDA addr 00aa load ACC with data from memory at address aa(hex)

STO addr 10aa Store ACC into memory at address aa

IN 8000 Input into ACC

ADD addr 20aa Add data from memory address 11 (hex) to the ACC

OUT 9000 Send data from ACC to the output port

JMP addr 40aa Set IP to code segment address aa (i.e. jump execution there)

HLT 7000 Halt processing.

You might want to investigate the following and work out what they do. Note Program 1 does not halt!

Program 1

IN

ADD 19 (hex)

JMP 1

Program 2

LDA 10

ADD 11

STO 12

OUT

HLT

