Comp3402 The Full Adder

C.B.Price January 2024

Purpose (i) To learn how to use the Structural Architecture, (ii) To apply this to construct a full adder
Files Required Vivado software (on machines, free download) and zipped projects

ILO Contribution LOS5

Send to Me nix

Homework Read chapter 13

1. Prep for coding the Adder Bit-Slice

(a) Here's a single bit slice which has three inputs, Cin, AO and BO and two outputs, the sum SO and carry out
Cout. Create the truth table for all 8 possible input values.

Cout«—— +—— Cin

SO

(b) Look at the rows where SO = 1. Create a logical mini-term for each row. E.g., if you have a row with Cin=0,
A0 =1, BO =0, then the mini-term will be A. ~B . ~C.

(c) Combine the 4 mini-terms to create a logical expression for SO =

(d) Repeat (b) and (c) to get an expression for Cout.

2. Coding the Adder Bit-Slice

(a) Fire up Vivado and open the source file fullAdderSlice.vhd. You will see that 8 mini-terms have been
declared for you, the first 4 are for the sum and terms 5-8 are for the carry.

(b) Code your expressions for the 8 mini-terms you have found above. Here’s an example how to code the
mini-term A. ~B . ~C: A and not(b) and not(C).

(c) Now code the expressions for sum S and for Cout. Do not attempt to synthesise, we must complete the
second source file.

Assembling the complete 4-bit Adder.

Here's the structure of our 4-bit added made from 4 of the Adder Bit-Slices you have just coded.

A3 B3 A2 B2 Al B1 A0 BO
Cout ——| " Cin
Cc3 Cc2 Cl
S3 S2 S1 S0

(a) Open up the source file FourBit_Full_Adder.vhd where the Structural Architecture is used. You will see the
following code which defines the Component fullAdderSlice.

|COMPONENT fullAdderSlice
] Port (A : in std logic;
B : in std logic;
Cin : in std logic;
S5 : out std logic;
- Cout : out std logic);
-END COMPONENT ;

The code which defines how the bit-slice components are connected is shown in the following begin-end block,
though this is incompelete

BEGIN

stagel: fullAdderSlice PORT MAP (X(U), Y(U), Cin, S(0O), C(L)) =
stagel: fullAdderSlice PORT MAP (; ; ; ;) :
stageZ: fullAdderSlice PORT MAP (

stage3: fullAdderSlice PORT MAP (

END Structural ;

r r r r } J'.

, , , , Cout) ;

Fill in the missing signals. You need to use signals from the Entity FourBit_Full_Adder declared up top,
specifically in the Port.

(b) Now it’s time to synthesise the whole circuit.

Running the TestBench

Run the associated test-bench to check the synthesis. You might like to change the radix of the display so it
shows unsigned decimals. You can do this by right-clicking on the value fields:

FourBit_Full_Adder_tb_behav.wcfg

M » = = | X

200.000 n=

Copy

Copy Value
e Cout
Delete
Find...
Find Value..
Waveform Style »
Signal Color 4
Radix Default

Binary
Reverse Bit Order Hexadedma
Mew Divider Octal

ASCIlI

v Unsigned Decimal

