
WeeBee Code Reference (Undergraduates)
CBP 11-02-22. Rev. 03-02-23

1. The Story-Writing-Coding API

The table below lists the methods currently available for Actors and Props. The only difference between Actors and
Props is that Actors can display emotions. The organization follows a linguistic classification, which stems from the
engine’s progeny in Story-Writing-Coding. May methods have several versions; e.g., the simplest jump(); can be
called without a parameter, but the jump height can be specified like this jump(50);

All methods (actions) take the same time. This is currently set to 2.0 seconds. This can be changed, as explained
below. The term “dObj” (dynamic object) refers to either an Actor or a Prop.

Process: Material: Transformative: Enhancing: Motion “move-at”

Basic Function + param

flipH(); horizontal flip

flipV(); vertical flip

spin(); spin(speed); spin at location

hover(); hover(speed); same as spin

 spinV(speed); rotate about vertical axis

jump(); jump(height); jump

rest(); rest or pause

Process: Material: Creative:

hide(); hide

show(); un-hide

Process: Material: Transformative: Elaborating: size

 shrink(scale); shrink by scale e.g. 0.8

 grow(scale); grow by scale e.g. 1.2

 squishH(scale); horizontal scale change

 squishV(scale); vertical scale change

 squishHV(scaleH,scaleV) scale change both horizontal and vertical

Process: Material: Transformative: Extending “possession”

 pickup(dObj); pick up a Prop or an Actor

 putdown(dObj); put down a Prop or an Actor

Process: Material: Transformative: Enhancing: motion “move-to”

 flyto(X,Y); moves in a straight line to (X,Y)

 flyto(dObj); moves in a straight line to a Prop or Actor

 walkto(X); moves horizontally to X, in a straight line

 hopto(X); makes a parabolic trajectory to X

 runto(X); moves horizontally to X with a wobble

 flapto(X); moves in a horizontal line to X with wings flapping (for winged creatures)

 stepto(X); moves in a horizontal line to X with legs moving (for non-winged creatures)

 leapto(X,Y); makes a parabolic trajectory to (X,Y)

 leaptoH(X,Y,H); makes a parabolic trajectory to (X,Y), with control over the leap height

 flyto3D(X,Y) like flyto(X,Y) but this variant gives a sense of perspective EXPERIMENTAL

Process: Mental: cognition

 thinks(string); string appears on canvas preceded by actor name

 thinks(string, fontSize);

Process: Verbal: Projecting

 says(string); string appears on canvas preceded by Actor name

 says (string, fontSize);

 says(string,fontSize,true); string appears near top-right of actor/prop

 shouts(string); string appears on canvas without the Actor name

 shouts(string, fontSize);

 chirps(string) plays a .wav file, the string is the filename, Cut off after anim time

 chirps(string, true) same as chirps but plays sound at end of anim time.

 sings(string) plays a .wav file, the string is the filename. Plays entire file

Process: Relational: Intensive Attributive

 is(emotion);
feels(emotion);

Only for Actors. Changes facial expression.

 appears(image); Changes the image. Parameter is a string, or a proxy in Header.txt

Process: Existential:

 add(dObj,X,Y); adds Actor or Prop at (X,Y)

 add(scenery,X,Y); adds item of scenery at (X,Y)

 add(scenery,X,Y,front); idem but in front of Actors

Process: Mental: Perception

 isNear(dObj); returns boolean true if a dObj is close to another dObj

 canSee(dObj); returns true if both Props or Actors are on the canvas

Scene Management

 setScene(sceneID);

Select a built-in scene

 setScene(“fname”); Load new scene from image supplied 900 x 600 .jpg

 changeScene(“fname”); Load new scene from image supplied 900 x 600 .jpg and remove all
previous scenery

showGrid(); Shows the grid on the canvas.

synch(); forces synchronisation of all Props and Actors to this point

tracePaths(); Breadcrumbs dropped when Actors and Props move – shows their paths

Turtle Graphics (“LOGO”)

 moveForward(dist); Note. These can be accessed by WeeBees and Props.

 rotate(degrees);

 setpenDown(true_false);

 setpenDown(true_false, color);

2. Scenery, Props and Actors

Remember, you can add many instances of each scenery element, but you can only add one instance of an actor and
a prop.

3. Standard Programming Constructs
The WeeBee engine is written in Java so you have access to that language, well almost. In the Story-Writing-Coding
mode you cannot use if-then-else selection statements due to the way the engine works. But the following
constructs are useful

3.1 User Functions
Your code will soon extend to tens (or above a hundred) lines, and it is annoying to have to replay all the code when
you add a few more lines. So split your code into functions and comment out one function when you are satisfied
with the code you have written there. Here’s an example where the code in myFunct1() is temporarily skipped.

public void once() {
 //myFunc1();
 myFunc2();
}
public void myFunc1() {
…
}
public void myFunc2() {
…
}

mysaucer myrobin myscarecrow

myant myrock mystar

myshell mytree mymushroom

mybush myfire mykite

myrug mybarrel myegg

mylog mysun

3.2 Loops
Here are two examples of using loops, the first adds multiple scenery elements to the scene and the second makes a
character execute multiple actions.

int count;

public void once() {
 count = 0;
 while(count < 50){
 add(rock, count,10);
 count += 10;
 }
}

int count;

public void once() {
 count = 0;
 while(count < 5) {
 grog.jump(10*count);
 count ++;
 }
}

3.3 User Input
You can get input from the user by a call to the asks(); function on an actor/prop. In the example below on the left,
Grog asks for a size factor which is used as a parameter to the grow(); function.

float size;

public void once() {
 add(grog,10,10);
 size = grog.asksForNumFloat(“Tell me my new size”);
 grog.grow(size);
}

float height;
public void once() {
 add(grog,50,10);
 height = grog.asksForNumFloat(“Input dance height”);
 dance(height);
}
public void dance(float h) {
 grog.jump(h);
}

The example on the right shows how you would pass an input parameter to your own function. The following asks
are available:

grog.asksForNumFloat(…); returns a float

grog.asksForNumInt(…); returns an int

grog.asksForYesNo(…); returns a boolean

4. Configuring the Engine (“Header.txt”) and Writing to the console

Here you can set the animation time interval which is currently 2 seconds, canvas.animationTime=2.0;

You can also set the text-box font size, canvas.gui.selectedSourcePanel.setFontSize(12); or you can choose the font
family, style and size, canvas.gui.selectedSourcePanel.setFont("Ariel",Font.BOLD,18);

To write to the console you need to add this line to your code, canvas.gui.msgOutput.setText(string); Remember a
Java string can be built like this, “The current value of count is “ + count +” and the jump height is “+ jumpHeight

5. Synchronisation
When you have multiple actors and props in a scene, then it is best to code in “tuples”, e.g., with two characters you
should code in paired statements, one for each character. Here’s the 4 possible tuples for two characters:

pip.rest();
grog.rest();

pip.jump();
grog.rest();

pip.rest();
grog.jump();

pip.jump();
grog.spin();

 “Pip jumps while Grog rests” “Pip jumps while Grog spins”

So, if you want to code “Pip jumps THEN Grog spins” you would write

pip.jump();
grog.rest();

pip.rest();
grog.spin();

If you have 3 actors/props then there are 8 possible combination of rest() and action in the tuples. There are two
other ways of synchronising:

(1) If you use add(object,X,Y); in your sequence, then all actors/props previously used will be synchronised after the
add.

6. Creating and Instantiating Props and Actors
You can use the normal Java syntax for doing this. Here’s an example of how to create a new prop.

SceneObject fried;

public void once() {
 fried = new SceneObject(canvas,”friedegg”);
 add(fried,20,10);
 fried.jump();
}

Here you have created an image with filename “friedegg.png” and have put it in the Data folder. To get an idea of
the image size, inspect some images already in the folder. The image type must be .png

Creating and using a new Character follows a similar pattern, but you need an image file for each emotion. Say your
new character is Izzy, then you need images named something like this Izcontent.png, Izexcited.png and so on for all
emotions. Here’s how you would use Izzy, the constructor loads all the images for you.

WeeBee Izzy;

public void once() {
 Izzy = new WeeBee(canvas,”Iz”);
 add(Izzy,20,10);
 Izzy.jump();
}

7. Working with Scenes
7.1 Creating your own Background.
This is straightforward. You must create a 900 x 600 pixel jpg image and place it in the data folder. Let’s call this
Scene2.jpg You can then set the scene to this, anywhere in your code by this command

setScene(“Scene2”);

You can call this function to change scenes on the fly.

7.2 Clearing a Scene
It is possible to clear out all your scenery at any time, though you cannot clear actors or props. If you want to make
actors or props disappear from one scene, then reappear at a different place in a new scene then you could do this

grog.hide();
grog.flyto(-100,-100);
setScene(“newScene”);
grog.flyto(30,10);
grog.show();

Finally, here is how to clear out all your scenery and load a new background image

clearScene(newImage);

Unfortunately, there is no way to automatically remove Actors and Props. So relocate them off the canvas.

7.3 Adding your own scenery
Simply use the name of your .png file in this variant of add:

add(“myScenery”,X,Y);

8. Experimental Theatre
8.1 Assets Provided
This is experimental in the sense of coding, not theatre. Instead of an outdoor scene which can support a story, here
the animation takes place on a stage. So instead of writing a story you could write a script. There are three parts to a
stage:

(i) The backdrop

(ii) The façade (curtain stuff)

(iii) Flats (vertical surfaces at each side of the stage used to conceal actors due to make an entrance)

The following code builds a stage with all three components. In addition the flats fly in from the top of the stage. You
could build on this code to effect scene changes, by raising and lowering different flats. The façade is added last,
since it has to be at the front.

setScene(13); // built-in woodland
scene
add(mywoodflat,45,200);
mywoodflat.flyto(45,0);
add(myfacade,45,0);

Here are assets available to create a stage. The names of the flats and façade are already declared and initialised.

Backdrops setScene(N); Flats Facades

11 Bridge mybridgeflat myfacade

12 Farmyard myfarmyardflat

13 Woodland mywoodflat

14 Wintery Scene mysnowdropflat

to move, i.e. descend from above, representing scene changes. Here’s an example of a backdrop, the associated flat
and how they appear combined, and finally with the façade added. Of course additional flats can be

created to provide scene-changes and entire theatrical performances. So far we have not trialled this approach with
children.

8.2 Creating your own Theatre Assets
This is straightforward. The backdrop is just a 900 x 600 jpg image, so look at section 6.1 for guidance here. The flats
and facades are extended from SceneObject, so think of these as props, and consult section 5.5. Look at the images
of the existing flats and facades in the Data folder to see how these have been created.

9. The Differences between the “Move-To” methods.

First, let’s have a look at the three methods that take a single parameter X. This means they are concerning with
movement in the X-direction, so at the end of the movement there is no change in the Y-location of the Actor or
Prop. These are shown in the picture below, where tracePaths(); has been used to create the blue breadcrumbs.

Grog has used the walkto(X); method; he moves in a straight line. Flup has used the runto(X); method; she bounces
up and down as she moves. Pip has used the hopto(X); method and her trajectory is the parabola expected of
someone moving in gravity. The flapto(X); and stepto(X); methods behave like walkto(X); but either feet or wings
move.

Now let’s look at the difference between the flyto(X,Y); and the leapto(X,Y) methods. In the image below, both Pip
and Flup have started from (10,0) and have moved to (60,40). Pip who uses the flyto(X,Y); method moves along a
straight line, from (10,0) to (60,40). Flup, who has used a leapto(X,Y); has executed a parabolic arc. But it ends at
(60,40). It is a bit like hopTo(X); but while the latter will always return the Actor to the ground, you can use
leapto(X,Y); to jump on top of scenery.

10. Using Sounds

Sound effects, music or spoken narration can be placed in the folder sounds using the .wav file format. There are
two ways sounds can be used:

1) A Long piece of music or narration can be started using e.g., pip.sings(“filename”); The sound will start when this
line of code is executed, and will continue for the length of the sound file in seconds. This will therefore accompany
the commands which follow.

2) A sound-effect can be played as part of the normal sequence of character actions, e.g., pip.chirps(“filename”);
The sound-effect should last no more than 2-seconds. So in the following sequence

 pip.jump();

 pip.chirps(“Egg”);

 pip.spin();

Pip will jump, then you will hear the sound of a cracking egg, then Pip will spin.

There is another way of using chirps(); which will combine a sound with an action. This is shown in the following
sequence

 pip.jump();

 pip.chirps(“Egg”,true);

 pip.spin();

Here, Pip will jump, then she will spin accompanied by the sound of the cracking egg.

11. Measuring the ‘quality’ of a story

Some time ago (2016) I reviewed the literature on what makes a good story. A shortened synthesis of my review is
shown in the table below. I subsequently used this to evaluate stories and published journal articles based on stories
created using the WeeBee engine.

There are 4 categories (A to D) and each category has a number of checks which are weighted (1 – 5) with 5 the best.
One number from each category is chosen, and the sum of these is one indication of the overall story quality.

A Event Chains (one thing leads to another)

1 The story has an event chain

1 The chain has an end

3 The chain shows a meaningful causal connections (reason or purpose)

4 The reader can draw inferences from events in the chain

B Disruption and Restoration of Equilibrium (Story Mountain)

1 There is a story mountain

2 The story opens by setting the scene

5 There is surprise in the story

5 The story creates a sense of suspense for the reader

C Response of Characters in the story

4 Characters respond to events

4 Characters show emotional response to events

5 Character behaviour is a consequence of choices they make

D The Reader’s Experience

3 The reader’s attention was held from beginning to end

5 The reader empathised with character(s)

5 The reader was immersed in the story

5 The reader was able to fill in any gaps or predict events

