Formulae for maximum power in wind or water or waves. This is the maximum power any device is able to extract.

Wind Turbine $P=\frac{16}{27} \frac{1}{2} \rho A v^{3}$	ρ density of air ($1 \mathrm{~kg} / \mathrm{m} 3$) A area of wind collected (m2) \checkmark wind speed (m / s)
Hydro (head) $P=\rho g H Q=\rho A \sqrt{2 g^{3} H^{3}}$	```\rho density of water (1000 kg/m3) g gravity (9.81 m/s2) Q flow (m3/sec) H}\mathrm{ water head (m)```
Hydro Kinetic $P=\frac{16}{27} \frac{1}{2} \rho A v^{3}$	```\rho density of water (1000 kg/m3) g gravity (9.81 m/s2) v water speed (m/s) A area of rotor blades```
Tidal Barrage $P=\frac{1}{4 T} \rho g A H^{2}$	```\rho density of water (1000 kg/m3) g gravity (9.81 m/s2) H water head (m) A area of lagoon Ttime of tide change (secs)```
Water Wave (deep - oceans) $P^{*}=\frac{1}{4} \rho g a^{2} \sqrt{\frac{g \lambda}{2 \pi}}$	```\rho density of water (1000 kg/m3) g gravity (9.81 m/s2) a wave amplitude (m) \lambda wavelength (m)```
Water Wave (shallow - coast) $P^{*}=\frac{1}{2} \rho g a^{2} \sqrt{g d}$	```\rho density of water (1000 kg/m3) g gravity (9.81 m/s2) a wave amplitude (m) d depth of water (m)```

Note P^{*} is per metre along the crest length, this in Watts/m.

Technology	Cost	Power
StreamDiver (Diglis)	EU 500,000	750 KW
Classic Wind Turbine	$\$ 1$ million	1 MW
Large Hydropower	$\$ 3$ Billion	1.5 GW
Simec Atlantis AR1500 Hydro Kinetic	$\$ 1.5$ million	1.5 MW
Rolls Royce Modular Nuclear	$\$ 2$ Billion	470 MW
Tidal	$\$ 918$ million	240 MW

Data from particular installations to give some idea of cost of power. For a comparison, you could compare the cost per kilowatt.

