
Comp3402 Working with Matrices
C.B.Price March 2022

Purpose (i) To investigate basic concepts of the OpenMP (ii) To investigate its application to
vector and matrix problems

Files Required Visual Studio Solution comprising various tasks

ILO Contribution 6

Send to Me

Assignment Info.

Homework Read Chapter 8

Activities

Workflow. Here you will proceed as follows:
(1) Open up the Visual Studio solution (sln), then follow the following steps.

(2) Select the Task

(3) Right-click on task and

set as Startup Project

(4) Select Build the Task

(5) Start without debugging

1

A Simple Matrix – How C stores the values of a matrix in physical memory

Here we shall be looking at a tiny matrix-vector multiplication and do the computation in sequential
mode. Here’s the arrays we shall use

[
?
?
] = [

1 2 3
4 5 6

] . [
1
2
3
]

The result on the left is a, the matrix in the middle is b and the vector on the right is c.

(a) Open up Task 6, inspect the code and run the task. You should get an answer of [14, 32].

(b) Now we are interested in how the matrix b is stored in physical memory. So, add a breakpoint at
the point where we are writing into the matrix like this

Now call Debug > Start Debugging. Go to the Debug tab (in the running debugger) and select the
following

You will get a Window Memory1. At the right set Columns to 12. Now in the Address: place type &b.
You may need to scroll the Source window down so you can see the assignments of the matrix.

Now hit F11 to step through the code. You should see each element of b coming into memory. More
important is the 3 elements of the first row come into successive memory locations, then the three
elements of the second row of b com in. In other words, a matrix is stored as rows within memory.

2

How to work with matrices in loops

To work on a matrix we need two loops, one looping over the rows and one over the columns. We
could do this in two ways. In the first, the outer loop goes over the rows and the inner loop over the
columns, and in the second way the outer loop takes the columns and the inner loop the rows. Like
this.

 for (int row = 0; row < nrRows; row++) {
 for (int col = 0; col < nrCols; col++) {
 sum += a[row][col];
 }
 }
or
 for (int col = 0; col < nrCols; col++) {
 for (int row = 0; row < nrRows; row++) {
 sum += a[row][col];
 }
 }

Let’s investigate which of these is more efficient.

(a) Open up Task 7 where the first variant is coded. You may need to reduce NR_ROWS and/or
NR_COLS to get some speed-up. Note down the time it takes

(b) Comment out the above variant and un-comment out the second. Recompile and re-run. What
do you find?

(c) Does this make sense knowing that rows are stored in memory? It’s all to do about the cache.

