Comp3402 Working with Matrices

C.B.Price March 2022
Purpose (i) To investigate basic concepts of the OpenMP (ii) To investigate its application to
vector and matrix problems
Files Required Visual Studio Solution comprising various tasks
ILO Contribution 6
Send to Me
Homework Read Chapter 8
Activities

Workflow. Here you will proceed as follows:
(1) Open up the Visual Studio solution (sIn), then follow the following steps.

(2) Select the Task

(4) Select Build the Task

Solution Explorer

= Q .qla Y@ - 3 5l @ ﬁ A 1 loml | Lo Lisl
i PerT—— Explorer (Ctri+) Build | Debug Test Analyze Tools Exten
. . [. .
3] Solution 'OpenMP_Release Prep' (7 ¢ I Build Solution
4 & Taski Rebuild Salution

B =B References

P g0 External Dependencies
T Header Files Build full program database file for solution
1! Resource Files
T

Clean Solution

Run Code Analysis on Solution

4 Source Files
b ++ Sourcel.cpp m Build Task1
(3) Right-click on task and (5) Start without debugging
set as Startup Project
W I ol 1 [z
1 | Debug | Test Analyze Tools E
Add Windows
++ - -
B Class Wizard... s
@ Manage MuGet Packages... I
P Start Debugging
£} Set as Startup Project b

Start Without Debugging

Nehiin =3

A Simple Matrix — How C stores the values of a matrix in physical memory

Here we shall be looking at a tiny matrix-vector multiplication and do the computation in sequential
mode. Here’s the arrays we shall use

1
(=l 5 o2

The result on the left is a, the matrix in the middle is b and the vector on the right is c.
(a) Open up Task 6, inspect the code and run the task. You should get an answer of [14, 32].

(b) Now we are interested in how the matrix b is stored in physical memory. So, add a breakpoint at
the point where we are writing into the matrix like this

L]] bfe][e] = 1;
1) b[e][1] = 2;
1 bBreirzl = 3:

Now call Debug > Start Debugging. Go to the Debug tab (in the running debugger) and select the
following

Debug | Test Analyze Tools Extensions Window Help Search (Ctrl+Q) L OpenMP_Release_Prep
. Windows * | @ Breakpoints Ctrl+Alt+B =92 | N _
Graphics * | @1 Exception Settings Ctrl+Alt+E
= P Continue F5 [@ Output -
ul Break All Ctrl+Alt+Break (o} XAML Binding Failures
B Stop Debugging Shift+F5 Show Diagnostic Tools Ctrl+Alt+F2 ar ** argv)
X Detach All ¥4 GPU Threads
Terminste Al [Tasks Ctrl+Shift+D, K
(O Restart Ctrk-Shift+F5 F2 Parallel Stacks Ctrl+Shift+D, S
-1 & Apply Code Changes Alt+F10 Parallel Watch y
@ Performance Profiler... Alt+F2
ke Watch J
ol 8] Relaunch Performance Profiler Shift+Alt+F2 ﬂ
Aut Ctrl+Alt+V, A
1;5':‘ Attach to Process... Ctrl+Alt+P Hes LAALE
o] Locals Crl+Alt+V, L
Other Debug Targets 4
EJ Immediate Crl+Alt+|
¥ Stepinto F11))
3 3 Step Over F10 B Live Visual Tree
Live P Expl
| % StepOut Shift+F11 G Live Property Explorer
) . _ (= Call Stack Ctrl+Alt+C
% & QuickWatch.. Shift+F9 S A
¥4 Threads Ctrl+Alt+H
Toggle Breakpoint F B Modules Ctrl+ Alt+ U
i ¥
e L T ‘35':‘ Processes Ctrl+Alt+Z
& Delete All Breakpoints Ctrl+Shift+F3 @ Diagnostic Analysis Ctrl+Shift+Alt+D
¥ Disable All Breakpoints
Memory P Memory 1 Cri+Alt+M, 1|

awm T

You will get a Window Memoryl. At the right set Columns to 12. Now in the Address: place type &b.
You may need to scroll the Source window down so you can see the assignments of the matrix.

Now hit F11 to step through the code. You should see each element of b coming into memory. More
important is the 3 elements of the first row come into successive memory locations, then the three
elements of the second row of b com in. In other words, a matrix is stored as rows within memory.

2 How to work with matrices in loops

To work on a matrix we need two loops, one looping over the rows and one over the columns. We
could do this in two ways. In the first, the outer loop goes over the rows and the inner loop over the
columns, and in the second way the outer loop takes the columns and the inner loop the rows. Like
this.

for (int row = 0; row < nrRows; row++) {
for (int col = 0; col < nrCols; col++) {
sum += a[row][col];
}
}
or
for (int col = 0; col < nrCols; col++) {
for (int row = 0; row < nrRows; row++) {
sum += a[row][col];

}

Let’s investigate which of these is more efficient.

(a) Open up Task 7 where the first variant is coded. You may need to reduce NR_ROWS and/or
NR_COLS to get some speed-up. Note down the time it takes

(b) Comment out the above variant and un-comment out the second. Recompile and re-run. What
do you find?

(c) Does this make sense knowing that rows are stored in memory? It’s all to do about the cache.

