
Unit1 Spatial Filtering 1

Worksheet 2
Spatial Filtering

1. The “Mean” Filter (Part-1)

This filter sweeps an NxN kernel across the image using the
correlation operation as explained in class to produce the
smoothed output image.

(a) Open up the script “FilterMean”. There’s quite a lot going
on here. Noise will be added to the image in two ways, (salt &
pepper, then Gaussian), then the mean filter will be applied.
Look for the following in the script.

 (i) Two functions which add different sorts of noise to the

image
 (ii) The calculation of the NxN smoothing kernel
 (iii) Filtering operation applied to original and two noisy

images

(b) Run the script, and when asked set the kernel size to 3. In
the Command Window type kernel and you will see the
smoothing kernel displayed. Its values should sum to 1.0.
Check this by typing sum(sum(kernel)) to sum both columns
and rows.

(c) Check out the original and smoothed images. What has
smoothing done to each image? To what extent has the noise
been reduced? Any other visible changes?

(d) Now repeat with a kernel size of 11. Dump the kernel
values in Command Window. Now check out the images. Has
smoothing worked to reduce the noise? Are there any other
visible changes? (Hint – look at the transformation on the
original image).

(e) Any conclusions on how to choose the size of the kernel?

(f) You may wish to experiment with other kernel sizes.

Nature of Computing 2

2. The “Mean” Filter (Part-2)

Here we shall work with a small 1D synthetic image to try and
increase our understanding of what is going on. The synthetic
image has a block of low values on the left, and high values on
the right, i.e., there is a vertical edge in the image. Noise will
play havoc with this edge. You will see a plot of this 1D image,
you could think of this as a ‘slice’ of a 2D image, say one row
of pixel values.

(a) Run the script NumFilerMeanEdgeRev and when asked set
(i) input size = 10, (ii) noise = 0, (iii) Input kernel size 3. What
has happened to the pixels near the edge? To the image far
left and far right?

(b) Type the following in the Command Window (i) “I” which
will show the numeric values of the input image (ii) “I_f”
which will show the numeric values of the filtered image (iii)
“kernel” which will show the numeric values of the kernel.

(c) Looking at the input image and the kernel, calculate the
output values when the kernel is centred at the index 5 in the
original image. Now try at index 2.

This should help you understand the operation of correlation.
You may wish to take notes and records of these numbers.

(d) Run the script again but now with (i) input size = 100, (ii)
noise = 0 and let’s change the kernel size. Look at the graphs
which show you what is happening at the middle row of input
and smoothed image.
So try kernel sizes of 3,5,7,11,15 and look at what happens to
the edge. Does this agree with your results from Activity 1?

(e) Now let’s work with noise. Run some experiments with (i)
input size = 100, (ii) noise = 0.01 and change the kernel sizes
3,5,7,9,11,15.
(i) What happens to the noise when you increase the kernel
size?
(ii) What happens to the edge when you increase the kernel
size?

Unit1 Spatial Filtering 3

(f) Do you understand that when you increase the kernel size,
one image property improves but another property gets
worse. Sound like a tradeoff, methinks.

3. Gaussian Filter applied to real images.

Let’s run the spatial filter “FilterGauss” on some images.

(a) Open up the script in the Octave Editor, and make sure you
understand what is going on, especially where the Gaussian
kernel is being set up.

(b) Now investigate the four combinations of values in this
table and make some conclusions about which combination
works best. Remember you can see the kernel values by
typing kernel at command line.

image
size

Kernel
size

sigma

100 11 2

100 11 9

100 5 2

100 5 9

