
Chapter 1 Image Processing 1

Chapter 1
Image Processing

1.1 A brief Introduction
Image processing is a huge area of application and research;

important applications are in medicine, where image

processing can increase the quality of an image to improve

the clinician’s diagnosis. Industrial applications involve

object detection, looking for cracks in pipes, or sorting fruit

coming down a conveyor belt according to size. Many

applications are automated, or at least semi-automated, but

some require human intervention to set parameters to achieve

near-optimal results. You will experience all of this.

 Here we shall use Octave as our toolkit; it is

convenient, open source and has a huge library of functions,

you will not need to write any code, but Octave is easy to read

and understand. One alternative is Open-CV which integrates

with Visual Studio; if you are a coder and find you enjoy

image processing, then this could be a useful platform with

which to develop your skills.

 Images are 2D-arrays of ‘pixels’, where each pixel

may correspond to one or more bytes; a color image, e.g.,

RGB will have 3 bytes per pixel, one per color channel.

Octave allows us to process each channel independently, or

together based on our needs. A greyscale image (no color)

will have one byte per pixel, so its values will range from 0

(black) to 255 (white). Sometimes we shall work with

normalized greyscale images where black is 0.0 and white is

1.0. Yep, these are floats.

 We shall be covering two areas of image processing;

first image enhancement which is all about increasing the

information transfer from the image to the viewer. Here we

shall be using medical images with a view of helping a

radiologist make a diagnosis. The second area is object

Chapter 1 Image Processing 2

Figure 1.1 Grey-scale thorax image with lack

of contrast.

Figure 1.2 Histogram of the image in Figure

1.1

detection which involves finding objects in a cluttered

image, and reporting on the objects detected, such as their

number and size. You will soon learn that images are

corrupted by noise which comes from the camera sensor; we

this processing.

1.2 Image Enhancement – Pixel Operations

Contrast Stretching
Consider the thorax x-ray image shown in Fig.1.1. You can

clearly see there is a total lack of contrast in this image

making diagnosis impossible. Just looking at the image you

can see that there are many grey-ish pixels and almost no

black or white pixels.

 This is made clear by looking at the histogram of the

grey-level distribution shown in Fig.1.2 for this image. Along

the bottom of this plot, you find the possible grey level values

for this image; it has been normalized so these levels range

from 0.0 to 1.0. Up the side you find the number of pixels in

the image with each of these possible values. So, you can see

that the pixels lie in a range about 0.5 – 0.73 which is a small

part of the total range 0.0 – 1.0. These pixels have grey-ish

values.

 It’s easy to understand how to enhance this image.

The range of pixels needs to be increased from 0.5 = 0.73 to

0.0 – 1.0. So, the value of each pixel has to be individually

changed. How this is computed is explained using the graph

below.

Input pixel values are

mapped to output values

by a linear function. Here

0.5 (in) is mapped onto 0.0

(out) and 0.73 (in) is

mapped onto 1.0 (out). So

the entire range of input

values is stretched out

Chapter 1 Image Processing 3

Figure 1.3 Contrast Stretched Image

Figure 1.4 Histogram of Contrast Stretched

Image

The result of this transformation is shown in Fig.1.3 with the

associated histogram in Fig.1.4. Looking at the image, you

can see a dramatic improvement in its appearance; if images

could speak (and they can when you look at them), this one

has much more to say. You can see the ribs, collar bones

and other features including the heart. Also there is a small

cancer nodule, that white circle, in the lung region on the

left.

 The histogram shows that the stretching operation

has changed the distribution of grey values which are now

spread over the entire available range, 0.0 – 1.0. So the

image is being used more optimally to convey information

to the viewer. All is not perfect, some pixels are not present

in the image as shown by the gaps in the histogram.

 Perhaps you could think of a way to improve this,

using some sort of interpolation to fill in the missing pixels?

Automatic Contrast Stretching
It is always interesting to see if when a human has made a

decision on parameter values, whether this could be

automated by some computer algorithm. For contrast

stretching this is straightforward. A program could look at

all the grey values in an image and find the lowest and the

highest. It would then map these values onto the full range

of 0.0 – 1.0. Octave has a function

stretchlim(image);

which returns the lowest value (+1%) and the highest value

(-1%). This range can then be used by a second function

imadjust(I,[lowIn,highIn],[lowOut,highOut]);

to do the actual mapping. This automation clearly

corresponds to the discussion above.

Chapter 1 Image Processing 4

Histogram Equalization
 We have seen how contrast stretching implicitly

changes the histogram of grey values. This raises the question

– can we explicitly change the histogram to improve the

image. The answer is yes, and this is ‘histogram

equalization’. The basic idea is that an image communicates

information to the viewer, and that pixel grey values do this

communication. So how can we make this optimal? Well, the

first thing is to make sure we use the entire range of grey

values, as discussed above. The second thing is to try to

change the grey values so the number of pixels with each grey

value is about the same. This ensures that each grey value is

being used equally as often, and so the maximum amount of

information is being communicated. Here’s an example

applied to the ‘Lena’ image (Fig.1.5).

T

The results are not as spectacular as one would hope; while

contrast stretching has been obtained, the numbers of pixels

with each grey value is certainly not the same. Comparing the

two histograms you may see that the peaks and troughs have

been smoothed out, and that the histogram has been partially

equalized.

 Histogram equalization is popular in many areas of

image processing, especially industrial applications. One area

where it is not widely used is in medical applications since it

is a very ‘brutal’ transformation, often producing large areas

Figure 1.5 Histogram Equalization: Left image before and after, right histogram before and after

Chapter 1 Image Processing 5

Figure 1.6 Histogram equalization applied to

the thorax image in Fig.1.1.

of very bright or very dark pixels. You can see this in Fig.1.6

where we have applied histogram equalization to the thorax

image from Fig.1.1.

1.3 Image Enhancement – Spatial Filtering
The image processing operations we have seen so far have

worked on individual pixels. Now we turn to a class of

operations which process regions of pixels. Let’s see how the

approach works using a diagrammatic representation of an

image. The computation works like this; the kernel is

scanned across all pixels in the image from top-left to bottom

right, and at each pixel there is a computation. For the

example shown in Fig.1.7, the inputs to the computation are

the 9 image pixels lying underneath the kernel cells, and the

output from the computation is located at the centre kernel

cell in the output image.

Here the kernel has scanned over part of the image and is

sitting on top of the yellow shaded area. The computation is

simple; each kernel number is multiplied by the underlying

pixel value, and the results are summed. Then we divide by

the sum of the kernel values. So, we have

(0x3)+(1x3)+(0x4)+(1x5)+(1x1)+(1x3)+(0x3)+(1x3)+(0x6)

which sums to 15, and we divide by the kernel sum (5) to give

us 15/5 = 3 which is the output pixel, shown in red in the

output image. This process is called convolution.

Figure 1.7 Convolution with a 3x3 kernel. The pixel shaded red is the output pixel.

Chapter 1 Image Processing 6

Image Noise
Spatial filtering is mainly used to remove noise in an image.

It turns out that noise is the major headache in successful

image processing; removal of noise is often the first stage in

an image processing pipeline of operations. Where does noise

come from? First there is ‘salt and pepper’ noise which comes

from ‘dead’ pixels in the imaging device, these pixels are

permanently black or white due to defects in the camera

sensor. Second there is Gaussian noise, a random variation of

pixel values around an expected value, this noise follows a

normal distribution. Both types of noise will be explored

below and are illustrated in Fig.1.8.

Filtering with the ‘Mean’ Filter
This is very much like the example above, except that all the

kernel values are set to 1.0, and we divide by the sum of

these values. In general, the kernel can have size NxN

(where N is always odd, so that there is a central ‘output’

pixel) and the kernel values are all set to

1

𝑁2

so the sum of the kernel values is 1.0. E.g., for a kernel size

3x3, its values are set to 1/9.

Applying this filter to the images in Fig.1.8 gives the results

shown in Fig.1.9 where there is a clear improvement in the

image quality, though the salt-and-pepper noise is still visible

on the surface of the Moon. There is another filter, the

‘median’ filter that does a better job at removing salt-and-

pepper noise, we’ll see that shortly. Also, if you look

carefully, you will just be able to see some blurring

(smoothing) at the edge of the disk. Here is the kernel used in

this example

Figure 1.8 Top, original image, centre with

salt and pepper noise, bottom with Gaussian

noise.

Chapter 1 Image Processing 7

Top, noisy image, bottom results of smoothing with kernel size 3

Smoothing the noisy image with kernel size 7

To understand the effects of the mean filter, we shall apply it

to a 1D synthetic image containing a single edge corrupted by

Gaussian noise. We shall then smooth the image with kernels

of increasing size. Here’s the original image together with a

smoothed image of kernel size 3.

The original image, before noise was added comprised the

left half with a value of 1.0 and the right half 2.0. The effects

of noise are clearly seen. After the smoothing, the size of the

noise spikes has clearly been lowered, and both left and right

halves are smoother. Now let’s see the effects of increasing

the kernel size to 7.

There is much better smoothing here, but something else has

changed, the central edge in the image has become less steep

Figure 1.9. Images from Figure 1.8 smoothed

with a mean filter with kernel size 3x3

Chapter 1 Image Processing 8

Left Gaussian kernel sigma = 2, right sigma = 3.

Figure 1.10 Unsharp Masking: (a) original

image (b) smoothed image (c) edge image (d)

final image

in other words, blurred. It’s easy to understand that as the

kernel size gets larger, there is better smoothing out of noise,

but edges become smoothed too, which is not really desirable.

There is a trade-off here.

The Gaussian Kernel
The mean filter sums image pixels under the kernel footprint

with equal weight, which means that the information in the

central pixel being processed is diluted with information

from pixels further away. The Gaussian kernel does better

being processed.

The Gaussian kernel is derived from the continuous function

𝑓(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(𝑥2+𝑦2)

2𝜎2

where the centre of the kernel is at x=0, y=0. The parameter

𝜎 (‘sigma’) controls how quickly the kernel ‘falls off’ in

space. Here’s a couple of examples, both for kernel sizes 5x5.

There are several things to note. First the kernels are

symmetric, they have the same values in equivalent horizontal

and vertical locations. Second, the values are larger near the

centre, the kernels actually have a bell-like shape. Finally you

can see that for a small 𝜎 the values drop of quickly as you

move out from the centre, the opposite for a larger 𝜎.

The Median Filter
The median of a set of numbers is the midpoint of the set

when it is sorted from lowest to highest number. This filter

also operates on a NxN neighbourhood, and the sorting

operation has to be carried out at each pixel. It turns out that

this filter is superior to mean or Gaussian smoothing since it

Chapter 1 Image Processing 9

Figure 1.11 Unsharp Masking. Images are

labelled.

tends to better preserve edges, and also removes isolated

noise spikes such as salt-and-pepper noise. However it is

much more computationally expensive than the averaging

filters since pixel values in the kernel must be sorted for

each centre (output) pixel. Compare this with the averaging

filters which involve NxN multiplications and (NxN -1)

additions.

1.4 Unsharp Masking
This beautiful technique finds its origins in dark-room

photography and was used long before digital image

processing. Its aim is to enhance the image by accentuating

any edges in the image, producing a more ‘crisp’ image. It

works by smoothing the image with a mean or Gaussian

kernel, then subtracting that from the original image to extract

edges in the image. This ‘edge’ image is then added to the

original image, with some weighting, to produce the final

sharpened image.

This is illustrated with a toy edge (Fig.1.10): (a) shows the

original step edge, (b) after smoothing the extent of which is

determined by the kernel size, (c) shows (a)-(b) which has

extracted the edge, and (d) is a fraction of (c) added to (a),

you can see the edge is accentuated.

Fig.1.11 shows this applied to ‘Lena’. We can also write

down these stages mathematically

𝐼𝑒𝑑𝑔𝑒 = 𝐼𝑜𝑟𝑖𝑔 − 𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑

𝐼𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑜𝑟𝑖𝑔 + 𝛼𝐼𝑒𝑑𝑔𝑒

where 𝛼 is typically between 0.0 and 1.0 and after a bit of

maths we can simplify this

𝐼𝑓𝑖𝑛𝑎𝑙 = (1 + 𝛼)𝐼𝑜𝑟𝑖𝑔 − 𝛼𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑

This requires a smoothing kernel, followed by a subtraction

of two image pixels. This can be combined into a single

kernel.

Chapter 1 Image Processing 10

Figure 1.12 Edge detection applied to coins

1.5 Edge Detection
Detecting edges in images is a useful image processing

operation and has two main applications; (i) enhancing the

image as we have seen, (ii) segmenting the image into the

objects it contains. We shall see the latter a little later on, for

the moment we need to understand how to detect edges. The

operation is shown in Fig.1.12 applied to some coins. The

output image grey values are large (white) where there are

edges. The algorithm works reasonably well, but it has also

detected the edges within the coins. Again, image processing

is tricky.

 It is understood that the human visual system (HVS)

contains a bank of edge detectors tuned to edges and lines of

various widths and orientations. The outputs of these are used

for object recognition.

 Let’s design a convolution kernel which detects

edges, and let’s work in 1D. In regions where the grey level

is constant, e.g., a load of 1’s (no edge) then the detector

should output zero. In other words, the kernel should take the

difference between nearby pixels. Here’s a good candidate

This will subtract the left pixel value from the right pixel

value and output the result at the centre pixel. Let’s see this

working on a toy image

At the top is a pure edge, the left and right pixel values are

shown. In the middle three positions of the kernel are shown

Chapter 1 Image Processing 11

the first outputs 0, the second 1 and the third 0. So where there

is no edge, the output is 0, the edge outputs a 1 on both sides

of the edge. So if we look at the output image, it would be

black with the edge showing as white, rather like in Fig.1.12.

 For 2D images we need a difference operator in both

directions. One old workhorse is the Sobel operator, which is

a pair of 3x3 kernels,

The left kernel finds the edges in the horizontal direction

(columns) and the right kernel finds the edges in the vertical

direction (rows). The Octave function imgradient(image)

calculates both and combines the results to give the

magnitude of the edge value at each pixel in the image. That’s

what you see in Fig.1.12.

 Edge detection operators are gradient operators and

respond to changes in image grey level height. Think of roads

of various gradients, such operators (in physical space) would

tell you the gradient of the road. Unfortunately, gradient

operators respond rather well to noise, as you can see in the

toy problem below which shows a single salt-and-pepper

spike on a flat background and the result of our simple edge

detector.

Chapter 1 Image Processing 12

Figure 1.13 Segmentation: Top original coin

image, bottom segmented and labelled coins

We’ve been here before and so we understand the problem.

Before we apply the edge detector kernel, we must first

smooth the image to reduce the noise, ideally using a

median filter. Of course, too much smoothing will also blur

the edges, and may cause some edges to run into each other.

1.6 Segmentation
Segmentation is the process of extracting objects or features

from an image. Inspection of electronic circuit boards may

need to check that all components are present, thus the

components (chips, resistors, etc) need to be identified in the

image. A simple example is shown in Fig.1.13 where the

original image comprises a number of coins, the objects to be

detected in an image. The goal here is to identify all coins in

the image, give them a label, and calculate their areas. The

image has been successfully segmented into a background

layer (cyan) and each extracted coin has been labelled with a

color. You can see that one coin has not been segmented

exactly.

 Segmentation is one of the trickiest areas in image

processing and is still the subject of research, its success often

depends on the quality of the input image. For industrial

situations this is relatively straightforward where the engineer

has some control over environmental variables (such as

lighting). For remote (satellite) sensing, e.g., of land usage,

this is often difficult, since the image quality is dictated by

the sensing device and procedure. There are two broad

approaches to segmentation (i) using edges (ii) using regions.

We shall look at the latter here.

Interactive Thresholding
Think about a grey level image, Fig.1.13; this comprises

pixels with values in the range 0-255. Now think of a

segmented image which we can write as

segmented image = objects AND background

So, a segmented image is a binary image where the

Chapter 1 Image Processing 13

Figure 1.14 Histogram of image from Fig 1.13

with results of thresholding at 120

background is 0 (black) and the objects are 1 or 255 (white).

How can we create such a binary image? We can draw on our

understanding of histograms of grey values. Look at the

histogram of the image in Fig.1.14. What does this tell us?

Well we have two peaks, showing there are a load of darker

pixels and a load of lighter pixels. Clearly the dark pixels

form the background, and the lighter pixels are the objects we

are segmenting out. All we need to do is to choose a threshold

grey value to separate pixels in these peaks out. All pixels

whose grey value is less than the threshold are assigned to

binary 0 in the output image, those greater are assigned to 1

in the output image. Results for a threshold of 120 are shown

in Fig.1.14. The result is close but not perfect. Interactive

thresholding allows the user to tune the thresholding for a

particular situation (image type, lighting, etc) so successive

images may be correctly segmenting. But of course, we

would like to automate this process.

Automatic Processing
Here we outline an algorithm which could find the threshold

automatically, and so adjust to the input image.

1. Estimate a good threshold T

2. Segment into two regions A and B

3. Compute the means of each region 𝑚1and 𝑚2

4. Compute a new threshold

𝑇 =
1

2
(𝑚1 +𝑚2)

5. Repeat steps 2 to 4 until the change in the

threshold is less than a specified value

Otsu’s Algorithm
This method of computing the optimal threshold partitions

the image pixels into two sets. Say there are L total grey

values in the image. Then pixels are put into one set with

values [0,1,2,…,k] and the other set with the remaining larger

values [k+1, k+2, …, L-1]. Otsu then calculates a variance.

Chapter 1 Image Processing 14

Figure 1.15 A noisy image and its histogram,

Impossible to segment

Figure 1.16 Segmentation by pre-processing

smoothing followed by Otsu's algorithm

Let’s refresh ourselves what variance means. If you open a

can of peas, they all have about the same mean size,

differences in size from the mean is small; so we have a low

variance. But look at the heights of folk in the lab; there is a

well-defined mean (no-one is 3m tall) but there is quite a bit

of spread in height, so quite some variance.

Now Otsu looked at the variance of the grey values of the

pixels in the two initial sets, but more importantly, he looked

at the variance between the two sets, and he argued that the

best segmentation would maximize this variance.

Segmenting Noisy Images
We have added some serious Gaussian noise to the original

coin image which now appears in Fig.1.15 where the

additional noise pixels have created an image whose

histogram does not have a valley; it is unimodal rather than

the bimodal histogram we want. Clearly it is impossible to

assign a threshold to this image. So how do we proceed?

Drawing on our understanding of smoothing noisy images,

let’s apply a 5x5 average smoothing kernel. The smoothed

image and its histogram, and the results of Otsu’s algorithm

are shown in Fig.1.16.

 The final segmentation result is almost perfect, and

Otsu’s algorithm has performed exceedingly well since the

histogram is quite complicated having at least two troughs.

The effect of smoothing has produced a relatively larger

number of brighter pixels (the coins) even though there is still

a huge number of pixels in the range 160-200.

Labelling and Analysing Objects
This is quite straightforward and is introduced in the toy

problem below. We start at the top left pixel in the image and

scan across the columns, and down the rows. If we find an

object pixel (value = 1) then we increment our label, and label

that pixel; this is shown as yellow in the diagram. Then we

continue scanning, and if we find an object pixel

neighbouring the one we have labelled, then we label that

second pixel with the same label. You can see this in the first

Chapter 1 Image Processing 15

diagram where one pixel is labelled yellow, and the next one

to the right will also be labelled yellow.

In the second diagram, the next row of the first object is

complete, then we hit another object pixel. This is not

connected to the first labelled object, so we assign a new

label, in this case green. Finally, all objects are labelled. Once

they are labelled, we can return to this list of labelled objects

and do some analysis, e.g., we can count the pixels to get their

area, or find the object width and height or shape.

As mentioned, this is a toy problem, and we can soon find

images where this approach does not work. An example is

shown below, where a two pass algorithm can be used to

correctly label the image.

First the procedure described above is applied as a first pass,

we find some connected components are given different

labels. In the situation where a pixel has two neighbours with

different labels, we agree to assign the smallest label.

Chapter 1 Image Processing 16

In the second pass, we check neighbouring labelled pixels and

if neighbours have different labels, then we assign the smaller

label. So the 2’s in the left object become 1’s and the 4’s and

5’s in the second object become 3’s. Perhaps we need a final

pass to reduce all labels to the smallest set, so {1, 3} above

will become {1, 2}.

1.7 Morphological Operations
The word ‘morphological’ stems from the Greek word

μορφή which means ‘shape’ or ‘form’, so morphological

operations are concerned with identifying and processing

shapes. This is very important in industrial inspection, object

identification and separation.

Fig 1.17 shows a typical situation. The image shows a printed

circuit board containing 5 chips (dark rectangles) and

connecting copper traces (thinner lines). We want to segment

the image so we only get the chips, the traces should be

discarded. Then we can label the chips, find their locations

and compare these with the design locations from a database.

Chapter 1 Image Processing 17

In this way we can check if all the chips are correctly placed

on the circuit board and see if some are missing (they are

placed by robot arms and the placement may fail).

The steps in processing this image are shown below. First
we threshold the grey level image so we have a binary
image. Then we apply an erosion operation which
removes the thin traces, leaving the chip as foreground
objects (white). Finally we apply a dilation operation
which restores the size of the chips. You can see that the
final image has almost correctly identified the 5 chips,
though the smaller one is split into two. We shall see how
to fix this, but first we need to understand what erosion
and dilation mean.

Erosion and Dilation
Morphological operations work by using a ‘structuring

element’ (SE), a small region of pixels a bit like a convolution

kernel used in smoothing. Just like a convolution operation

where the kernel is scanned over the image, here the SE is

scanned over the binary image, and the centre SE pixel, the

output from the operation is assigned a value of 1 or 0.

Let’s take the example of the erosion operation shown in the

diagram below. The input image contains a 5x5 square (here

grey means 1 and white means 0), the green cross is the

structuring element, the red centre shows where its output is

written. The diagram shows two locations of the SE. In the

first, the output is 0 since the SE does not totally overlap with

the input image. In the second location, the SE does totally

overlap with the input object, so the output is 1.

Figure 1.17 Image of printed circuit board

with chips and traces

Chapter 1 Image Processing 18

The final result is shown in the image below, the original 5x5

object has been reduced to a 2x2 object.

It’s clear to see what erosion does, it nibbles away the edges

of an object. It does a great job of removing individual noise

pixels, and you can apply it several times to remove objects

of desired size.

Now let’s apply dilation to the same 5x5 object. Here we get

an output from the red pixel if any part of the SSE overlaps

with the object. The diagram below shows such an overlap

together with the final result, the object has been dilated, an

extra ring of pixels added around the object.

Erosion and dilation are kind of ‘opposites’ (though they are

not ‘inverses’ in the mathematical sense). Erosion makes

object smaller, it can remove thin structures which often join

larger objects, while dilation broadens thin structures and

makes objects larger.

Chapter 1 Image Processing 19

The question arises how to choose the SE. Well, that depends

on the application, e.g., for the printed circuit board it makes

sense to choose a rectangular SE since we wish to preserve

the chips which are rectangles while removing the thin traces.

On the other hand, if we are trying to identify and count

circular objects, e.g., fruit passing along a conveyor belt, then

we would choose a circular SE. Also, we could use several

SEs if we had to count objects of different sizes in the image.

The Hit-or-miss operation
This is used for object detection. We choose a structuring

element to have the shape of the object we are looking for and

the aim is to find all occurrences of this object in the image.

A typical example is optical character recognition.

It is clear from the above discussion of erosion, that we get

an output of 1 when the SE is completely contained within a

region of pixels in the image. Let’s say we are looking for the

digit ‘3’, shown below. We construct a SE with this shape

(green with output pixel shown as a circle). Then we erode

the image, and we find three remaining pixels, shown by ‘X’.

These are the pixels where the SE has hit any underlying 3.

We have correctly identified the left ‘3’ but have a false

positive in the right, where the object is not the ‘3’ we are

looking for. It’s easy to see what has gone wrong; imaging

eroding a large rectangle with the ‘3’ SE, we would get lots

of hits provided the SE fits into the rectangle. The truth is that

the ’3’ is defined not only by its foreground pixels, but by

some background pixels, and therefore we need to take these

into account.

Chapter 1 Image Processing 20

The easiest algorithmic approach is to take the complement

of the SE and the complement of the image (0’s changed to

1’s etc.). Then we erode the complement image with the SE

image.

The diagram below shows the original erosion (top) with the

new complementary erosion (bottom) where the Xs show the

remaining pixels.

So to take both foreground and background processing into

account, we need to logically AND where each gives us an

output. You can see that this only occurs at one point, which

locates the true ‘3’.

