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Chapter 1 
Image Processing 

1.1 A brief Introduction 
Image processing is a huge area of application and research; 

important applications are in medicine, where image 

processing can increase the quality of an image to improve 

the clinician’s diagnosis. Industrial applications involve 

object detection, looking for cracks in pipes, or sorting fruit 

coming down a conveyor belt according to size. Many 

applications are automated, or at least semi-automated, but 

some require human intervention to set parameters to achieve 

near-optimal results. You will experience all of this. 

 Here we shall use Octave as our toolkit; it is 

convenient, open source and has a huge library of functions, 

you will not need to write any code, but Octave is easy to read 

and understand. One alternative is Open-CV which integrates 

with Visual Studio; if you are a coder and find you enjoy 

image processing, then this could be a useful platform with 

which to develop your skills. 

 Images are 2D-arrays of ‘pixels’, where each pixel 

may correspond to one or more bytes; a color image, e.g., 

RGB will have 3 bytes per pixel, one per color channel. 

Octave allows us to process each channel independently, or 

together based on our needs. A greyscale image (no color) 

will have one byte per pixel, so its values will range from 0 

(black) to 255 (white). Sometimes we shall work with 

normalized greyscale images where black is 0.0 and white is 

1.0. Yep, these are floats. 

 We shall be covering two areas of image processing; 

first image enhancement which is all about increasing the 

information transfer from the image to the viewer. Here we 

shall be using medical images with a view of helping a 

radiologist make a diagnosis. The second area is object 
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Figure 1.1 Grey-scale thorax image with lack  

of contrast. 

Figure 1.2 Histogram of the image in Figure 

1.1 

detection which involves finding objects in a cluttered 

image, and reporting on the objects detected, such as their 

number and size. You will soon learn that images are 

corrupted by noise which comes from the camera sensor; we 

this processing. 

1.2 Image Enhancement – Pixel Operations 

Contrast Stretching 
Consider the thorax x-ray image shown in Fig.1.1. You can 

clearly see there is a total lack of contrast in this image 

making diagnosis impossible. Just looking at the image you 

can see that there are many grey-ish pixels and almost no 

black or white pixels. 

 This is made clear by looking at the histogram of the 

grey-level distribution shown in Fig.1.2 for this image. Along 

the bottom of this plot, you find the possible grey level values 

for this image; it has been normalized so these levels range 

from 0.0 to 1.0. Up the side you find the number of pixels in 

the image with each of these possible values. So, you can see 

that the pixels lie in a range about 0.5 – 0.73 which is a small 

part of the total range 0.0 – 1.0. These pixels have grey-ish 

values. 

 It’s easy to understand how to enhance this image. 

The range of pixels needs to be increased from 0.5 = 0.73 to 

0.0 – 1.0. So, the value of each pixel has to be individually 

changed. How this is computed is explained using the graph 

below. 

  

Input pixel values are 

mapped to output values 

by a linear function. Here 

0.5 (in) is mapped onto 0.0 

(out) and 0.73 (in) is 

mapped onto 1.0 (out). So 

the entire range of input 

values is stretched out 
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Figure 1.3 Contrast Stretched Image 

Figure 1.4 Histogram of Contrast Stretched 

Image 

The result of this transformation is shown in Fig.1.3 with the 

associated histogram in Fig.1.4. Looking at the image, you 

can see a dramatic improvement in its appearance; if images 

could speak (and they can when you look at them), this one 

has much more to say. You can see the ribs, collar bones 

and other features including the heart. Also there is a small 

cancer nodule, that white circle, in the lung region on the 

left. 

 The histogram shows that the stretching operation 

has changed the distribution of grey values which are now 

spread over the entire available range, 0.0 – 1.0. So the 

image is being used more optimally to convey information 

to the viewer. All is not perfect, some pixels are not present 

in the image as shown by the gaps in the histogram. 

 Perhaps you could think of a way to improve this, 

using some sort of interpolation to fill in the missing pixels? 

Automatic Contrast Stretching 
It is always interesting to see if when a human has made a 

decision on parameter values, whether this could be 

automated by some computer algorithm. For contrast 

stretching this is straightforward. A program could look at 

all the grey values in an image and find the lowest and the 

highest. It would then map these values onto the full range 

of 0.0 – 1.0. Octave has a function  

stretchlim(image);  
 

which returns the lowest value (+1%) and the highest value 

(-1%). This range can then be used by a second function 

imadjust(I,[lowIn,highIn],[lowOut,highOut]);   

 

to do the actual mapping. This automation clearly 

corresponds to the discussion above. 
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Histogram Equalization 
 We have seen how contrast stretching implicitly 

changes the histogram of grey values. This raises the question 

– can we explicitly change the histogram to improve the 

image. The answer is yes, and this is ‘histogram 

equalization’. The basic idea is that an image communicates 

information to the viewer, and that pixel grey values do this 

communication. So how can we make this optimal? Well, the 

first thing is to make sure we use the entire range of grey 

values, as discussed above. The second thing is to try to 

change the grey values so the number of pixels with each grey 

value is about the same. This ensures that each grey value is 

being used equally as often, and so the maximum amount of 

information is being communicated. Here’s an example 

applied to the ‘Lena’ image (Fig.1.5). 

 

T 

 

 

 

 

 

 

The results are not as spectacular as one would hope; while 

contrast stretching has been obtained, the numbers of pixels 

with each grey value is certainly not the same. Comparing the 

two histograms you may see that the peaks and troughs have 

been smoothed out, and that the histogram has been partially 

equalized. 

 Histogram equalization is popular in many areas of 

image processing, especially industrial applications. One area 

where it is not widely used is in medical applications since it 

is a very ‘brutal’ transformation, often producing large areas 

Figure 1.5 Histogram Equalization: Left image before and after, right histogram before and after 
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Figure 1.6 Histogram equalization applied to 

the thorax image in Fig.1.1. 

of very bright or very dark pixels. You can see this in Fig.1.6 

where we have applied histogram equalization to the thorax 

image from Fig.1.1. 

1.3 Image Enhancement – Spatial Filtering 
The image processing operations we have seen so far have 

worked on individual pixels. Now we turn to a class of 

operations which process regions of pixels. Let’s see how the 

approach works using a diagrammatic representation of an 

image. The computation works like this; the kernel is 

scanned across all pixels in the image from top-left to bottom 

right, and at each pixel there is a computation. For the 

example shown in Fig.1.7, the inputs to the computation are 

the 9 image pixels lying underneath the kernel cells, and the 

output from the computation is located at the centre kernel 

cell in the output image. 

 

 

 

 

 

 

 

Here the kernel has scanned over part of the image and is 

sitting on top of the yellow shaded area. The computation is 

simple; each kernel number is multiplied by the underlying 

pixel value, and the results are summed. Then we divide by 

the sum of the kernel values. So, we have 

(0x3)+(1x3)+(0x4)+(1x5)+(1x1)+(1x3)+(0x3)+(1x3)+(0x6) 

which sums to 15, and we divide by the kernel sum (5) to give 

us 15/5 = 3 which is the output pixel, shown in red in the 

output image. This process is called convolution. 

Figure 1.7 Convolution with a 3x3 kernel. The pixel shaded red is the output pixel. 
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Image Noise 
Spatial filtering is mainly used to remove noise in an image. 

It turns out that noise is the major headache in successful 

image processing; removal of noise is often the first stage in 

an image processing pipeline of operations. Where does noise 

come from? First there is ‘salt and pepper’ noise which comes 

from ‘dead’ pixels in the imaging device, these pixels are 

permanently black or white due to defects in the camera 

sensor. Second there is Gaussian noise, a random variation of 

pixel values around an expected value, this noise follows a 

normal distribution. Both types of noise will be explored 

below and are illustrated in Fig.1.8. 

Filtering with the ‘Mean’ Filter 
This is very much like the example above, except that all the 

kernel values are set to 1.0, and we divide by the sum of 

these values. In general, the kernel can have size NxN 

(where N is always odd, so that there is a central ‘output’ 

pixel) and the kernel values are all set to  

1

𝑁2
 

so the sum of the kernel values is 1.0. E.g., for a kernel size 

3x3, its values are set to 1/9. 

Applying this filter to the images in Fig.1.8 gives the results 

shown in Fig.1.9 where there is a clear improvement in the 

image quality, though the salt-and-pepper noise is still visible 

on the surface of the Moon. There is another filter, the 

‘median’ filter that does a better job at removing salt-and-

pepper noise, we’ll see that shortly. Also, if you look 

carefully, you will just be able to see some blurring 

(smoothing) at the edge of the disk. Here is the kernel used in 

this example 

  
Figure 1.8 Top, original image, centre with 

salt and pepper noise, bottom with Gaussian 

noise. 
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Top, noisy image, bottom results of smoothing with kernel size 3 

Smoothing the noisy image with kernel size 7 

To understand the effects of the mean filter, we shall apply it 

to a 1D synthetic image containing a single edge corrupted by 

Gaussian noise. We shall then smooth the image with kernels 

of increasing size. Here’s the original image together with a 

smoothed image of kernel size 3. 

 

 

 

 

 

 

 

 

 

 

The original image, before noise was added comprised the 

left half with a value of 1.0 and the right half 2.0. The effects 

of noise are clearly seen. After the smoothing, the size of the 

noise spikes has clearly been lowered, and both left and right 

halves are smoother. Now let’s see the effects of increasing 

the kernel size to 7. 

 

 

 

 

 

 

There is much better smoothing here, but something else has 

changed, the central edge in the image has become less steep  

Figure 1.9. Images from Figure 1.8 smoothed 

with a mean filter with kernel size 3x3 
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Left Gaussian kernel sigma = 2, right sigma = 3. 

Figure 1.10 Unsharp Masking: (a) original 

image (b) smoothed image (c) edge image (d) 

final image 

in other words, blurred. It’s easy to understand that as the 

kernel size gets larger, there is better smoothing out of noise, 

but edges become smoothed too, which is not really desirable. 

There is a trade-off here. 

The Gaussian Kernel 
The mean filter sums image pixels under the kernel footprint 

with equal weight, which means that the information in the 

central pixel being processed is diluted with information 

from pixels further away. The Gaussian kernel does better 

being processed.  

The Gaussian kernel is derived from the continuous function 

𝑓(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(𝑥2+𝑦2)

2𝜎2  

where the centre of the kernel is at x=0, y=0. The parameter 

𝜎 (‘sigma’) controls how quickly the kernel ‘falls off’ in 

space. Here’s a couple of examples, both for kernel sizes 5x5. 

 

 

 

 

There are several things to note. First the kernels are 

symmetric, they have the same values in equivalent horizontal 

and vertical locations. Second, the values are larger near the 

centre, the kernels actually have a bell-like shape. Finally you 

can see that for a small 𝜎 the values drop of quickly as you 

move out from the centre, the opposite for a larger 𝜎. 

The Median Filter 
The median of a set of numbers is the midpoint of the set 

when it is sorted from lowest to highest number. This filter 

also operates on a NxN neighbourhood, and the sorting 

operation has to be carried out at each pixel. It turns out that 

this filter is superior to mean or Gaussian smoothing since it 
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Figure 1.11 Unsharp Masking. Images are 

labelled. 

tends to better preserve edges, and also removes isolated 

noise spikes such as salt-and-pepper noise. However it is 

much more computationally expensive than the averaging 

filters since pixel values in the kernel must be sorted for 

each centre (output) pixel. Compare this with the averaging 

filters which involve NxN multiplications and (NxN -1) 

additions. 

1.4 Unsharp Masking 
This beautiful technique finds its origins in dark-room 

photography and was used long before digital image 

processing. Its aim is to enhance the image by accentuating 

any edges in the image, producing a more ‘crisp’ image. It 

works by smoothing the image with a mean or Gaussian 

kernel, then subtracting that from the original image to extract 

edges in the image. This ‘edge’ image is then added to the 

original image, with some weighting, to produce the final 

sharpened image. 

This is illustrated with a toy edge (Fig.1.10): (a) shows the 

original step edge, (b) after smoothing the extent of which is 

determined by the kernel size, (c) shows (a)-(b) which has 

extracted the edge, and (d) is a fraction of (c) added to (a), 

you can see the edge is accentuated. 

Fig.1.11 shows this applied to ‘Lena’. We can also write 

down these stages mathematically 

𝐼𝑒𝑑𝑔𝑒 = 𝐼𝑜𝑟𝑖𝑔 − 𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 

𝐼𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑜𝑟𝑖𝑔 + 𝛼𝐼𝑒𝑑𝑔𝑒 

where 𝛼 is typically between 0.0 and 1.0 and after a bit of 

maths we can simplify this 

𝐼𝑓𝑖𝑛𝑎𝑙 = (1 + 𝛼)𝐼𝑜𝑟𝑖𝑔 − 𝛼𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 

This requires a smoothing kernel, followed by a subtraction 

of two image pixels. This can be combined into a single 

kernel. 
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Figure 1.12 Edge detection applied to coins 

1.5 Edge Detection 
Detecting edges in images is a useful image processing 

operation and has two main applications; (i) enhancing the 

image as we have seen, (ii) segmenting the image into the 

objects it contains. We shall see the latter a little later on, for 

the moment we need to understand how to detect edges. The 

operation is shown in Fig.1.12 applied to some coins. The 

output image grey values are large (white) where there are 

edges. The algorithm works reasonably well, but it has also 

detected the edges within the coins. Again, image processing 

is tricky. 

 It is understood that the human visual system (HVS) 

contains a bank of edge detectors tuned to edges and lines of 

various widths and orientations. The outputs of these are used 

for object recognition. 

 Let’s design a convolution kernel which detects 

edges, and let’s work in 1D. In regions where the grey level 

is constant, e.g., a load of 1’s (no edge) then the detector 

should output zero. In other words, the kernel should take the 

difference between nearby pixels. Here’s a good candidate 

 

This will subtract the left pixel value from the right pixel 

value and output the result at the centre pixel. Let’s see this 

working on a toy image 

 

 

 

 

 

 

At the top is a pure edge, the left and right pixel values are 

shown. In the middle three positions of the kernel are shown  
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the first outputs 0, the second 1 and the third 0. So where there 

is no edge, the output is 0, the edge outputs a 1 on both sides 

of the edge. So if we look at the output image, it would be 

black with the edge showing as white, rather like in Fig.1.12. 

 For 2D images we need a difference operator in both 

directions. One old workhorse is the Sobel operator, which is 

a pair of 3x3 kernels, 

 

 

 

 

The left kernel finds the edges in the horizontal direction 

(columns) and the right kernel finds the edges in the vertical 

direction (rows). The Octave function imgradient(image) 

calculates both and combines the results to give the 

magnitude of the edge value at each pixel in the image. That’s 

what you see in Fig.1.12. 

 Edge detection operators are gradient operators and 

respond to changes in image grey level height. Think of roads 

of various gradients, such operators (in physical space) would 

tell you the gradient of the road. Unfortunately, gradient 

operators respond rather well to noise, as you can see in the 

toy problem below which shows a single salt-and-pepper 

spike on a flat background and the result of our simple edge 

detector. 
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Figure 1.13 Segmentation: Top original coin 

image, bottom segmented and labelled coins 

We’ve been here before and so we understand the problem. 

Before we apply the edge detector kernel, we must first 

smooth the image to reduce the noise, ideally using a 

median filter. Of course, too much smoothing will also blur 

the edges, and may cause some edges to run into each other. 

1.6 Segmentation 
Segmentation is the process of extracting objects or features 

from an image. Inspection of electronic circuit boards may 

need to check that all components are present, thus the 

components (chips, resistors, etc) need to be identified in the 

image. A simple example is shown in Fig.1.13 where the 

original image comprises a number of coins, the objects to be 

detected in an image. The goal here is to identify all coins in 

the image, give them a label, and calculate their areas. The 

image has been successfully segmented into a background 

layer (cyan) and each extracted coin has been labelled with a 

color. You can see that one coin has not been segmented 

exactly. 

 Segmentation is one of the trickiest areas in image 

processing and is still the subject of research, its success often 

depends on the quality of the input image. For industrial 

situations this is relatively straightforward where the engineer 

has some control over environmental variables (such as 

lighting). For remote (satellite) sensing, e.g., of land usage, 

this is often difficult, since the image quality is dictated by 

the sensing device and procedure. There are two broad 

approaches to segmentation (i) using edges (ii) using regions. 

We shall look at the latter here. 

Interactive Thresholding 
Think about a grey level image, Fig.1.13; this comprises 

pixels with values in the range 0-255. Now think of a 

segmented image which we can write as 

segmented image = objects AND background 

 

So, a segmented image is a binary image where the 
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Figure 1.14  Histogram of image from Fig 1.13 

with results of thresholding at 120 

background is 0 (black) and the objects are 1 or 255 (white). 

How can we create such a binary image? We can draw on our 

understanding of histograms of grey values. Look at the 

histogram of the image in Fig.1.14. What does this tell us? 

Well we have two peaks, showing there are a load of darker 

pixels and a load of lighter pixels. Clearly the dark pixels 

form the background, and the lighter pixels are the objects we 

are segmenting out. All we need to do is to choose a threshold 

grey value to separate pixels in these peaks out. All pixels 

whose grey value is less than the threshold are assigned to 

binary 0 in the output image, those greater are assigned to 1 

in the output image. Results for a threshold of 120 are shown 

in Fig.1.14. The result is close but not perfect. Interactive 

thresholding allows the user to tune the thresholding for a 

particular situation (image type, lighting, etc) so successive 

images may be correctly segmenting. But of course, we 

would like to automate this process. 

Automatic Processing 
Here we outline an algorithm which could find the threshold 

automatically, and so adjust to the input image. 

1. Estimate a good threshold T 

2. Segment into two regions A and B 

3. Compute the means of each region 𝑚1and 𝑚2 

4. Compute a new threshold 

𝑇 =
1

2
(𝑚1 +𝑚2) 

5. Repeat steps 2 to 4 until the change in the 

threshold is less than a specified value 

 

 

Otsu’s Algorithm 
This method of computing the optimal threshold partitions 

the image pixels into two sets. Say there are L total grey 

values in the image. Then pixels are put into one set with 

values [0,1,2,…,k] and the other set with the remaining larger 

values [k+1, k+2, …, L-1]. Otsu then calculates a variance. 
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Figure 1.15 A noisy image and its histogram, 

Impossible to segment 

Figure 1.16  Segmentation by pre-processing 

smoothing followed by Otsu's algorithm 

Let’s refresh ourselves what variance means. If you open a 

can of peas, they all have about the same mean size, 

differences in size from the mean is small; so we have a low 

variance. But look at the heights of folk in the lab; there is a 

well-defined mean (no-one is 3m tall) but there is quite a bit 

of spread in height, so quite some variance. 

Now Otsu looked at the variance of the grey values of the 

pixels in the two initial sets, but more importantly, he looked 

at the variance between the two sets, and he argued that the 

best segmentation would maximize this variance. 

Segmenting Noisy Images 
We have added some serious Gaussian noise to the original 

coin image which now appears in Fig.1.15 where the 

additional noise pixels have created an image whose 

histogram does not have a valley; it is unimodal rather than 

the bimodal histogram we want. Clearly it is impossible to 

assign a threshold to this image. So how do we proceed? 

Drawing on our understanding of smoothing noisy images, 

let’s apply a 5x5 average smoothing kernel. The smoothed 

image and its histogram, and the results of Otsu’s algorithm 

are shown in Fig.1.16. 

 The final segmentation result is almost perfect, and 

Otsu’s algorithm has performed exceedingly well since the 

histogram is quite complicated having at least two troughs. 

The effect of smoothing has produced a relatively larger 

number of brighter pixels (the coins) even though there is still 

a huge number of pixels in the range 160-200.  

Labelling and Analysing Objects 
This is quite straightforward and is introduced in the toy 

problem below. We start at the top left pixel in the image and 

scan across the columns, and down the rows. If we find an 

object pixel (value = 1) then we increment our label, and label 

that pixel; this is shown as yellow in the diagram. Then we 

continue scanning, and if we find an object pixel 

neighbouring the one we have labelled, then we label that 

second pixel with the same label. You can see this in the first 
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diagram where one pixel is labelled yellow, and the next one 

to the right will also be labelled yellow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second diagram, the next row of the first object is 

complete, then we hit another object pixel. This is not 

connected to the first labelled object, so we assign a new 

label, in this case green. Finally, all objects are labelled. Once 

they are labelled, we can return to this list of labelled objects 

and do some analysis, e.g., we can count the pixels to get their 

area, or find the object width and height or shape. 

As mentioned, this is a toy problem, and we can soon find 

images where this approach does not work. An example is 

shown below, where a two pass algorithm can be used to 

correctly label the image. 

First the procedure described above is applied as a first pass, 

we find some connected components are given different 

labels. In the situation where a pixel has two neighbours with 

different labels, we agree to assign the smallest label. 
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In the second pass, we check neighbouring labelled pixels and 

if neighbours have different labels, then we assign the smaller 

label. So the 2’s in the left object become 1’s and the 4’s and 

5’s in the second object become 3’s. Perhaps we need a final 

pass to reduce all labels to the smallest set, so {1, 3} above 

will become {1, 2}. 

1.7 Morphological Operations 
The word ‘morphological’ stems from the Greek word 

μορφή which means ‘shape’ or ‘form’, so morphological 

operations are concerned with identifying and processing 

shapes. This is very important in industrial inspection, object 

identification and separation.  

 

Fig 1.17 shows a typical situation. The image shows a printed 

circuit board containing 5 chips (dark rectangles) and 

connecting copper traces (thinner lines). We want to segment 

the image so we only get the chips, the traces should be 

discarded. Then we can label the chips, find their locations 

and compare these with the design locations from a database. 
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In this way we can check if all the chips are correctly placed 

on the circuit board and see if some are missing (they are 

placed by robot arms and the placement may fail). 

 
The steps in processing this image are shown below. First 
we threshold the grey level image so we have a binary 
image. Then we apply an erosion operation which 
removes the thin traces, leaving the chip as foreground 
objects (white). Finally we apply a dilation operation 
which restores the size of the chips. You can see that the 
final image has almost correctly identified the 5 chips, 
though the smaller one is split into two. We shall see how 
to fix this, but first we need to understand what erosion 
and dilation mean. 
 

 
Erosion and Dilation 
Morphological operations work by using a ‘structuring 

element’ (SE), a small region of pixels a bit like a convolution 

kernel used in smoothing. Just like a convolution operation 

where the kernel is scanned over the image, here the SE is 

scanned over the binary image, and the centre SE pixel, the 

output from the operation is assigned a value of 1 or 0.  

Let’s take the example of the erosion operation shown in the 

diagram below. The input image contains a 5x5 square (here 

grey means 1 and white means 0), the green cross is the 

structuring element, the red centre shows where its output is 

written. The diagram shows two locations of the SE. In the 

first, the output is 0 since the SE does not totally overlap with 

the input image. In the second location, the SE does totally 

overlap with the input object, so the output is 1. 

Figure 1.17 Image of printed circuit board 

with chips and traces 
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The final result is shown in the image below, the original 5x5 

object has been reduced to a 2x2 object. 

 

It’s clear to see what erosion does, it nibbles away the edges 

of an object. It does a great job of removing individual noise 

pixels, and you can apply it several times to remove objects 

of desired size. 

Now let’s apply dilation to the same 5x5 object.  Here we get 

an output from the red pixel if any part of the SSE overlaps 

with the object. The diagram below shows such an overlap 

together with the final result, the object has been dilated, an 

extra ring of pixels added around the object. 

 

Erosion and dilation are kind of ‘opposites’ (though they are 

not ‘inverses’ in the mathematical sense). Erosion makes 

object smaller, it can remove thin structures which often join 

larger objects, while dilation broadens thin structures and 

makes objects larger. 
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The question arises how to choose the SE. Well, that depends 

on the application, e.g., for the printed circuit board it makes 

sense to choose a rectangular SE since we wish to preserve 

the chips which are rectangles while removing the thin traces. 

On the other hand, if we are trying to identify and count 

circular objects, e.g., fruit passing along a conveyor belt, then 

we would choose a circular SE. Also, we could use several 

SEs if we had to count objects of different sizes in the image. 

The Hit-or-miss operation 
This is used for object detection. We choose a structuring 

element to have the shape of the object we are looking for and 

the aim is to find all occurrences of this object in the image. 

A typical example is optical character recognition. 

It is clear from the above discussion of erosion, that we get 

an output of 1 when the SE is completely contained within a 

region of pixels in the image. Let’s say we are looking for the 

digit ‘3’, shown below. We construct a SE with this shape 

(green with output pixel shown as a circle). Then we erode 

the image, and we find three remaining pixels, shown by ‘X’. 

These are the pixels where the SE has hit any underlying 3. 

We have correctly identified the left ‘3’ but have a false 

positive in the right, where the object is not the ‘3’ we are 

looking for. It’s easy to see what has gone wrong; imaging 

eroding a large rectangle with the ‘3’ SE, we would get lots 

of hits provided the SE fits into the rectangle. The truth is that 

the ’3’ is defined not only by its foreground pixels, but by 

some background pixels, and therefore we need to take these 

into account. 
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The easiest algorithmic approach is to take the complement 

of the SE and the complement of the image (0’s changed to 

1’s etc.). Then we erode the complement image with the SE 

image. 

The diagram below shows the original erosion (top) with the 

new complementary erosion (bottom) where the Xs show the 

remaining pixels. 

 

So to take both foreground and background processing into 

account, we need to logically AND where each gives us an 

output. You can see that this only occurs at one point, which 

locates the true ‘3’. 

 


