
Chapter 14 Microprocessor Design 1

Chapter 14
Microprocessor Design

14.1 A brief Introduction
You are probably reading this on some electronic device, and

that will have some form of microprocessor feeding your

screen and responding to your swipes or clicks.

Microprocessors and their smaller cousins, microcontrollers

(in household appliances, cars and spacecraft) are ubiquitous,

so it is essential that we understand them.

 This chapter does not simply discuss their structure

and function, instead we aim much higher, to try to

understand how they are designed. We shall present our

design for a CPU which extends the “mu0” model, a

conceptual model from Manchester University where we

have added input-output. This design will be realized using

VHDL.

 Like buildings, CPUs are designed by architects, they

have a particular architecture. Just as the architecture of

buildings has changed over time, so has the architecture of

CPUs. One significant factor in this change has been the cost

of electronic components. You are well aware that computer

programs are stored as instructions in memory. In the 1980s1

memory was expensive, so CPUs were designed so that each

instruction completed a complex processing operation. So a

program occupied a small amount of memory. However such

complex operations were often slow. This architecture used

by Intel is called Complex Instruction set Architecture

(CISC). When memory became cheap, the architecture

moved towards simpler instructions which executed much

more rapidly, but several simple instructions were required to

complete each complex operation and this consumed more

1 Intel made their first 4004 microprocessor in 1971. Their 8086

processor (origin of the Pentium series) was made in 1978 and the first

Pentium was made in 1993.

Nature of Computing 2

memory. Such architectures are known as Reduced

Instruction Set architectures (RISC). There’s an interesting

back-story of why and how Intel migrated to this architecture

for its Pentium processors, while retaining the illusion that

the chips were in fact CISC, in order to main compatibility

with applications that were coded for the original CISC chips.

14.2 Two Architectures Compared
So what are the mainstream CPU architectures we need to be

aware of today? There are many, but let’s have a look at two.

The most important is the ‘Single Instruction Single Data’

(SISD) architecture. Think about this line of code,

count = count + 1

There is one item of data here (the variable count) and there

is one instruction (add 1). I guess you will see that most of

code you have written conform to this architecture. A

hypotherical CPU design which supports this architecture is

sketched below.

There are a number of components to this architecture. We

have on the left:

• A RAM Code Segment where our program

instructions are stored.

• A RAM Data Segment where our variables are stored

• Input and Output Ports

Chapter 14 Microprocessor Design 3

On the right we have :

• The Arithmetic Logic Unit (ALU) which performs

calculations such as add, subtract, etc.

• Some parking places for variables as they are shuffled

around, and some logic to glue everything together.

In the centre we have the Control Unit which coordinates the

entire CPU activity. The control unit is fed with an

instruction, and it sends signals to the stuff on the right to

make it the instruction actually happen (execute). This SISD

architecture is the one we shall use.

 Let’s compare this with a different architecture

known as a ‘Systolic Array’. It’s a bit like a production line

where something (data) comes in at the left and passes

through various stages of processing and exits at the right.

Each stage has its own processing (code).

Each stage in this pipeline executes its own code, and the

results are passed down to the next stage. A recent example

we have been working on is to understand swimming fish.

Their backbones are made of segments and each segment has

a neural circuit which makes it bend, but also communicates

to the downstream segment, which produces a travelling

wave or swimming motion. In our model, the ‘Head’ segment

(Code-1) codes an oscillator which provides a regular signal

between +1 and -1. Then the following segments (Code-2,…

Code-N) apply a phase delay in this signal, so each successive

segment moves at a later time. This results in swimming. Our

code has been implemented on chain (‘systolic array’) of

Arduino Nanos and works well. But that’s another chapter!

Nature of Computing 4

14.3 Introduction to CPU2S
This is the CPU we shall synthesize. There are two

dimensions we must understand together, the CPU hardware

and how it executes instructions. These instructions are not

lines of code like C, but are assembler instructions, the lowest

level of programming. Each instruction in the Instruction Set

is converted directly to electronic signals.

 First let’s look at the hardware structure shown in the

diagram below.

What do we recognize? Well, there is an arithmetic-logic unit

(ALU) which does additions etc., and there is some RAM

Chapter 14 Microprocessor Design 5

memory. On real CPUs this is cache memory on the CPU die,

not to be confused with RAM on the mother board. In our

CPU2S design we can think of the RAM as partitioned into

two segments the code segment (where the instructions are

stored) and the data segment (where variables are stored).

Programming a Pentium also uses code and data segments.

To understand the other components, let’s start with

the ALU, Fig.1. Its shape reminds us that there are two inputs

at the top and one output at the bottom, So if we input 3 on

the left and 5 on the right, the ALU could be instructed to add

these and give us an output of 8. Now, one ALU input is

connected to a register2 ACC, which stands for

‘accumulator’. The input to the accumulator is connected to

the output of the ALU, so when the above addition is

performed, the ‘8’ would be written back into the

accumulator ACC. If we did a second addition with 5 on the

right, then we would have 8 + 5 = 13 and 13 would be written

back into ACC. So you see where the name accumulator

comes from, since it could accumulate the results of

successive instructions.

 Below the ALU you can see two other registers, the

first is IP the instruction pointer which points to the address

of the instruction in memory being executed. As a program

runs, the IP will contain 0 for the first instruction, then 1 for

the second, then 2, 3, 4, and so on. The other register IR is

the instruction register which holds the actual instruction

currently being executed. We’ll come back to this in a

moment, but let’s focus on the IP. To get the instruction at

the address held in the IP out of memory, the value of IP has

to be propagated to memory as an address; it does this by

travelling along the abus short for address bus which is

shown in green on the right. To get to RAM it passes through

a switch called muxA3. It’s the job of the Control Unit to flip

2 A register is high speed memory which holds one item of data.
3 mux is short for ‘multiplexer’ which is the electronic engineering term

for a switch.

Figure 1 ALU and Accumulator inter-connecting

signals.

Figure 2 Instruction Pointer (IP) and

Instruction Register (IR) switched onto the

address bus.

Nature of Computing 6

the switch so that IP is selected and not IR, we’ll see the

details of this later, see Fig.2.

 Now let’s look at what happens when we get some

data out of RAM; it comes out at the bottom and passes

through another switch muxC. Then it propagates onto one

of the data buses dbus1 and travels upwards. If you look

carefully, you can see that the data can end up in one of two

places. Either it could end up in the instruction register IR,

which is what happens when we ask to get an instruction from

the code segment in memory, or it could end up at the right

input to the ALU (passing through another switch muxB),

which is what happens when we ask to get an item of data

from the data segment in memory, see Fig.3.

 Now let’s see what happens when we have done a

computation and we wish to store the result in the data

segment in memory. You now understand that the result of

the computation is stored in the accumulator ACC. You can

also see that there is a path downwards on dbus2 from the

ACC and into RAM. Of course, an address in the data

segment needs to be supplied, and when we come to look at

the details, we shall see how this comes down the address

abus, see Fig.4.

There’s two more hardware blocks that need

introducing, which form the input-output system. The InPt is

the input port which reads input switches, and the OutPt is

the output port which is connected to LEDs. You can see that

data comes down into the OutPt via dbus2, though you may

correctly ask the question how do we know whether to send

tata into OutPt or into RAM? Later! The input provided by

InPt ends up on dBus1 where it will probably end up in the

ALU but dbus1 can also be fed from RAM. So you can see

the purpose of muxC, to select if we send RAM data or InPt

data to dbus1. We can’t do both at the same time, just like

you can’t eat a sandwich and take a drink at the same time,

see Fig.5.

Figure 3 Data Path out of memory with two

possible destinations.

Figure 4 Data Path out of the accumulator into

memory.

Chapter 14 Microprocessor Design 7

 To bring this hardware section to an end, let us reflect

on one important design decision. The diagram above has

various components connected by lines (abus, dbus1, and

other intermediate lines). These carry electronic signals and

comprise several bits. Our CPU2S has been designed to be a

’16-bit’ device, which means that all of the lines, the

registers, the ALU, the MUXes and in-out ports are 16-bits

wide. The red lines (which we have not yet discussed) come

from the Control Unit, and these are single-bit signals, or in

the case of selALUf a four-bit signal). Later!

14.4 The Instruction Set
Now let’s turn to the set of instructions we need to actually

make the above hardware design really work. Remember I

mentioned that hardware and the instruction set need to be

designed together, that’s why they are referred to as the

Instruction Set Architecture (ISA). Also I said that every

hardware component is 16-bits wide. This means that the

instructions must be encoded with 16-bits,since they will end

up in the IR which is 16-bits wide.

 Let’s take a simple computation, we wish to add two

numbers in data segment memory, add them and write the

result back into data segment memory. Assume that one

number is at address addr1, the other is at addr2 and the sum

must be written at addr3. What instructions do we need?

Well, we need to get these numbers out of memory. So we

could start with this instruction

load accumulator from memory LDA addr1

which puts the data at addr1 into the accumulator ACC ready

to feed the ALU. We could follow this with the instruction

add with data from memory ADD addr2

which gets the data at addr2 and loads it into the right input

of the ALU and does the addition. As discussed above, the

result would be sent to the accumulator ACC. So far, so good.

Figure 5 Input and Output Ports.

Nature of Computing 8

Now we need to store the value in the accumulator back into

data segment memory at address addr3. We need an

instruction like this,

store accumulator to memory STO addr3

Any other arithmetic operations such as SUB addr will work

just like the ADD addr. Note that all of these instructions

have two parts, the name or mnemonic (e.g., LDA) followed

by the address in memory addr. Other instructions we shall

need could be an input instruction,

input into accumulator IN

and an output instruction

output from accumulator OUT

Other instructions to give us the capability to create loops and

also if-then-else selections will be discussed later. For the

moment, it is interesting to note the central place of the

accumulator ACC in our design.

14.5 Encoding Instructions
In the above section, we have introduced some fundamental

instructions, and we have given these ‘human-readable’

names such as LDA addr. That’s fine, we humans need that,

but the CPU operates on signals and so we have to encode

these human-readable forms into a 16-bit equivalent which

can move, as signals, along the CPU’s wires. Here’s how we

do the encoding of the instruction into 16 bits

I I I I X X X X X X X A A A A A

The 4 bits on the left (blue) encode the instruction mnemonic,

the 5 bits on the right encode the address, and the remainder

Chapter 14 Microprocessor Design 9

of the bits (Xs) are not used. Here X means ‘don’t care’. Let’s

take a couple of examples.

First the LDA instruction, and say we wish to load the

accumulator with data in memory at address 16 (dec). Here’s

the encoding for our CPU2S,

LDA addr

0 0 0 0 X X X X X X X 1 0 0 0 0

and here’s the encoding for the instruction to store the

accumulator into memory at address 17 (dec)

STO addr

0 0 0 1 X X X X X X X 1 0 0 0 1

The above diagrams show what is inside the Instruction

Register IR. These bits come out the register as signals on 16

wires. So what happens to them? Look at the diagram below.

The highest 4 bits which encode the instruction are passed

into the Control Unit which outputs the control signals (red)

which excite various components such as the muxes. The

Nature of Computing 10

lowest 5 bits are output to the address bus and make their way

to memory as you understand.

14.6 Hardware Components
In this section we’ll see how each of the hardware

components that make up CPU2S function.

14.6.1 The Registers
We have three registers in our design, the IP, IR, and ACC.

They all have the same behaviour (in the VHDL sense too!).

The structure is shown in Fig.6, you will recognize this as a

D flip-flop (it’s actually 16 flip-flops, one for each bit).

There’s an input and an output and a signal ldR, ‘load

register’, when this is 1 the input is clocked into the register

on the next clk rising edge. You can see this on the timing

diagram below. Here’s a Vivaldo testbench waveform.

Look at the rising clk edges. At the first the value of load is

‘0’, so data_in is not passed through to data_out. On the

second rising edge, load is ‘1’ so the data_in ‘0011’ appears

at data_out. It stays there until data_in changes, load is ‘1’

and there is a rising clk edge.

14.6.2 The ALU
Here we have two inputs inA and inB and a single output op.

There is also a control input, shows as usual in red, which

comes from the Control Unit. This is a 3-bit signal and the

ALU performs different operations based on the states of

these 3 bits, see Fig.7. Here are some examples of ALU

operations which we summarize using VHDL notation.

Figure 6 Register.

Figure 7 ALU showing inputs and output, and the

function select signal (red)

Chapter 14 Microprocessor Design 11

sel_ALUf bit pattern operation

“001” op <= inB

“010” op <= (inB + 1)

“011” op <= (in A + inB)

“100” op <= (inA – inB)

The third and fourth operations are the expected addition and

subtraction, But what about the first two which look a little

strange. The first one is a ‘pass through’ where the input

passes through unchanged. This is used in using the ALU as

part of the data path. The second instruction adds 1 to inB.

This is used to increment the instruction pointer IP as the

instructions are fetched in sequence. The Vivado testbench

waveform shown below has been designed to test all four

operations.

You can see from the Value column that inA=0003 and

inB=0002. The first input to sel_ALUf is U which means

‘undefined’. The next is 1 and we can see that inB is passed

through to the op which is correct; we are in ‘pass through’

mode. The next sel_ALUf input is 2 and the output is inB+1

which, again is correct. Then comes sel_ALUf = 3 the output

is the addition of inA and inB. Finally, sel_ALUf is 4 which

is inB subtracted from inA. So that’s how the ALU works!

14.6.3 The Memory – RAM
Memory is composed of a lot of 16-bit wide cells where data

is stored. To access any cell, you need its address, and of

course there are two operations you can perform on memory,

read and write. Fig. 8 shows the signals in and out of RAM.

Nature of Computing 12

There is data_in and data_out and of course the address

addr_in. Now to the control signals. When memory is being

accessed, we must have mio = ‘1’. If it is ‘0’ then the input-

output ports are being used. The signal mwe stands for

‘memory write enabe’, so if mwe = ‘0 then we are reading

and if mwe = ‘1’ then we are writing. Finally, we have clk.

This is only used when we are writing to memory.

 Memory is organized into two segment, the code

segment where our instructions are stored and the data

segment where data is being stored. The code segment starts

at address 0, and the data segment starts at address 16) dec.

Here’s the data segment we shall use

These numbers are shown in VHDL hex format, the first row

starting at address 16(dec) contains the numbers 2, 3, 4, 5.

 A testbench waveform to show the memory at work

is shown below where we have numbered the clock cycles to

make things clear, see below.

Figure 8 The structure of memory with address,

data and control signals.

Chapter 14 Microprocessor Design 13

So in clk cycle-1 and clk cycle-2 mio is low, so there is no

memory activity requested, data-out is undefined, you can

see the orange UUUU. Also, data_in is undefined since there

is no incoming data. But at the start of clk cycle-2 the address

0010 (hex) 16(dec) appears on addr_in. At the start of clk

cyle-3 mio is high, so memory is active and mwe is low,

which indicates a read from memory. The addr_in bus signal

is address 0010 (hex) = 16 (dec), so memory will be read from

this address. The above data segment shows the data at this

address is 2, so this appears on data_out as 0002 (hex) during

clk cycles 3 and 4. Now look at clk cycle-6, here mwe is high

which means data is being written into memory, and the

address 0011(hex) 17(dec) is on the address bus, so this is

where the data will be written. This data has value 0022(hex).

Finally, at clk clycle 7 mwe drops low, so the memory is

being read, and you can see that the data just written

0022(hex) appears on data_out. So this shows that the

memory write instruction was correctly processed.

14.6.4 The MUX
A multiplexer is a switch, ours have two inputs and one

output, see Fig.9. The input selected is defined by the MUX

control signal selMux (which comes from the Control Unit).

The operation is really straightforward, when selMux is ‘1’

then inA is passed though to the output op and conversely

when selMux is ‘0’ then inB is passed through to op. You

can see this happening in the testbench waveform below,

where inA = “0003” and inB = “0005”. When sel is high the

3 gets through to the output and when sel is low the 5 gets

through to the output.

Figure 9 The MUX with two inputs, one output and

the selection signal

Nature of Computing 14

14.6.5 The Input Port
This port (Fig.10) takes digital signals from the real world,

e.g., from switches or buttons and passes them onto dBus1 so

the value can be loaded into the accumulator ACC. Of course,

the RAM needs to communicate with ACC so there must be

a selector between the input port and the RAM. This is the

purpose of muxC. The behaviour of the Input Port is quite

simple, the real world input signals are sent to the output of

the Input Port when the signal oeIP (which means ‘output

enable of the Input Port”) is ‘1’ else nothing gets through.

14.6.6 The Output Port
This port is a simple register fed by dBus2. When its control

signal ieOP is high on a rising clock edge, then the value of

dBus2 is passed through, and could, for example, illuminate

some LEDs.

14.6.7 The Control Unit
This looks like a complex and hungry beast, perhaps the

hardest part of the CPU to understand. Its job is to take the

current instruction being executed, and to set all the control

signals (the red arrows) in order to make the execution of the

instruction to actually happen. So it’s a logical input-output

device which can be summarized as a truth table, therefore

it’s actually very simple to understand. Here’s the truth table

for our controller, we have only shown when outputs (red) are

high, unless a low value is important.

You can see that various outputs agree with the components

we have presented so far, e,g, the IN and OUT instructions

Figure 10 The Input and Output Ports.

Chapter 14 Microprocessor Design 15

set mio low since these are not concerned with memory. All

other instructions are concerned with memory, so mio is high.

You can see how the control signal sent to the ALU to select

its function is correct, the values “011” and “100” agree with

our discussion of the ALU. Other signals require a more in-

depth discussion of CPU2S, which might appear in the future.

14.7 An Example Complete Program
Let’s have a look at a simple program that gets a number from

the input port into the accumulator, then adds a number from

memory to this, then outputs the result, in the accumulator, to

the output port. Note the central position of the accumulator

in all of this. Here’s an annotated code snippet from the code

segment, where the address 10 is of course hex which is 17

(dec).

Also, here’s the data segment where you can see the number

to be added is 3.

The timing diagram resulting from execution of this program

is shown below where some features have been highlighted,

for example we have labelled the clock cycles.

Nature of Computing 16

Chapter 14 Microprocessor Design 17

You can see the instruction pointer IP marching up 0, 1, 2, 3,

4 as our four instructions are executed in sequence. You can

also see the instruction register IR contains our four

instructions in turn: 8000 (IN), 2011 (ADD 10), 9000 (OUT)

and 7000 (HLT).

 Perhaps the most important point is to trace the data

flow as the program executes, and we remember that the

accumulator plays a pivotal role. Look at the inPort from

clock cycle 1 to 6, it contains the input value 1. Now at the

rising edge of clock cycle 3 this value is loaded into the

accumulator ACC (red arrow), since the IN instruction

(8000) is being executed at this time. Next by the rising edge

of clock cycle 5 (blue arrow) the addition has been performed

(the ADD 10 instruction is in the IR at this time) , and at this

rising edge, the added number appears in ACC. Finally,

during the output instruction (9000) the result in the

accumulator is sent to the outport at the rising edge of clock

cycle 7 (purple arrow). The next instruction is 7000 HLT, so

we are all done.

14.8 Coda
I hope you have learned something from this chapter and the

associated worksheet activities. I really hope this has left you

with a feeling of awe for those electronic engineers who

design our CPUs, that they synthesize electronic circuits

where each component has its place and function. Of course

they have a vision of the whole which is more than the sum of

its parts (whatever that might mean), and their electronic

circuits are designed with a particular Instruction Set in mind.

To end where we started, there is a load of architecture going

on here.

Nature of Computing 18

