
Chapter 13 Synthesis of Digital Circuits 1

Chapter 13
Synthesis of Digital Circuits

13.1 A brief Introduction
When designing a new computing system, the computer

engineer is faced with a number of choices. These include the

programming paradigm1, the programming language, and the

hardware on which the system will run. Hardware design

often starts with the choice of the CPU or MPU; do we need

something like a Pentium or alternatively like an ATMega328

MPU (used on the Arduino) or a Cortex MPU used on more

powerful Arduino variants? Or should we choose a Digital

Signal Processing (DSP) chip, which is usually the case if our

system is to handle audio or video data. Across the huge range

of choices we have, we find different characteristics such as

clock speed, bus width, functionality and cost.

 At this point a couple of questions spring to mind.

First, how is the digital electronic circuitry on each of these

chips designed? Second, how can we design and synthesise a

completely new chip for a bespoke application? In the early

days of electronic engineering, a computer system was

designed and developed ‘on paper’ then ‘by hand’ using

discrete chips and breadboards. This is how I created the 8-

bit data-processing computer ‘Condac-85’ some years ago.

This is no longer the case. Today’s engineers have CAD tools

where the electronic circuitry design is done in software

which specifies how digital functional blocks are connected

using signals (which run along wires).

 A typical workflow is shown in the diagram below.

On the left is a block diagram of a simple CPU which we need

1 ‘Paradigms’ are not languages! They are a higher-level description of

the style of programming. The one you are used to is imperative (C,

Java, C#). The functional paradigm has no assignments, functions are

applied to arguments (Scheme). The logical paradigm specifies facts and

inference rules, and asks if something is true, the program goal (Prolog).

Nature of Computing 2

to create using digital circuitry; there is a lot of functionality

behind this block diagram which we capture in some sort of

specification document (or hold in our heads or in

conversations). The first stage in synthesis is to convert this

diagram and its functionality into a computer language which

has been designed to support digital circuitry. This is a

‘Hardware Description Language’ (HDL). When the

computer program describing the block diagram is complete,

we call the compiler, which synthesizes the design into a ‘net’

list.

This net list describes how various electronic building blocks

are wired up to create our desired functionality. The final

stage is to upload a representation of this list to our target

device, which is a ‘Field Programmable Gate Array’ (FPGA).

The one we shall use is the Arty-A7 board shown on the right,

the software is ‘Vivaldo’ from Xilinx, now a part of AMD.

 The takeaway point is that when we code in VHDL,

we are not programming a CPU, but we are physically wiring

up an electronic circuit. This happens inside the FPGA, so

let’s see what an FPGA actually is. To do this let’s compare

the hardware architecture of the MPU in a typical Arduino

shown in Fig.1 (top) with the architecture of a FPGA shown

in Fig.1 (bottom).

 The MPU has a clear and specific architecture with

various functional blocks connected via signal wires and

Chapter 13 Synthesis of Digital Circuits 3

signal buses. There are also signal wires connected to the

external environment which ultimately appear as Arduino

input and output pins. Now consider the architecture of the

FPGA. At first glance it appears that there is no architecture

at all! All we have appears to be an array of ‘blobs’ connected

by wires. Well, the technical term for these ‘blobs’ is

‘Configurable Logic Blocks’ (CLBs). Each CLB will contain

some look-up tables (implemented using RAM) and some

flip-flops which can provide sequences of operations.

Running horizontally and vertically between the CLBs are

loads of wires, and each CLB can connect to any of these

wires which run next to the CLB. Also, at the intersections of

the horizontal and vertical wires are a load of switches which

can connect horizontal with vertical, a ‘matrix’ of switches.

 The point is that all of these switches and connexions

are programmable, and this is how it works. The HDL

captures the digital design, and then when it uploads to the

FPGA chip, it makes the correct CLB-wire connexions and

switch connexions to create ‘synthesize’ the digital design.

So at this point, our desired CPU runs on full-speed hardware,

the design has become hardware. One may say on a

theological level, that our hardware design has become

incarnate in the FPGA.

13.2 Introduction to VHDL
Our job will be to use a HDL to create a number of digital

circuits from a simple door-lock to a simple CPU (the one

shown above). The specific language we shall use is ‘VHDL’

which stands for VHSIC Hardware Description Language

where the acronym VHSIC in turn stands for Very High

Speed Integrated Circuit. Just call me ‘VHDL’.

There is one fundamental difference between the basic code

object we use in conventional programming and those used

in VHDL. The languages we have used so far manipulate

Figure 1 Top shows the architecture of a

Mega328 MPU chip, bottom shows the

architecture of a FPGA.

Nature of Computing 4

basic objects called variables. They may be assigned a value,

and they retain (remember) that value, e.g., the statement

dist = distArray[index];

grabs the value in the array distArray at the index, and assigns

it to the variable dist. From this point on dist will have this

value unless it is changed. In VHDL the basic object is a

signal which is a voltage (LOW or HIGH) which resides on

a wire. So we could have the statement

output <= input;

This states that the signal on the output wire is identical to the

signal on the input wire for all time. So if the input signal

changes the output signal will change too. There is no

memory implied here. Note the <= operator which reminds us

that we are dealing with signals rather than procedural

assignments = .

13.2.1 VHDL code for the Or-gate
Let’s consider just a simple OR-gate. Sure, we’d never use

VHDL to actually model this, but it’s a good place to learn

some basic syntax.

 Let’s review the structure and functionality of the OR-

gate; see Fig.2. Here the structure is shown at the top. There

are two inputs A and B and an output Op. Of course this

structure is not unique to the OR-gate, all two-input logic

gates have the same structure. It’s the functionality which is

unique to each gate type; this is represented as a truth table.

The code for the OR-gate reflects this structure and

functionality, separating them into two separate blocks of

code. Here’s the entire code, where I’ve retained the VHDL

coloring.

Figure 2 OR-gate. Top shows the structure and

bottom shows functionality.

Chapter 13 Synthesis of Digital Circuits 5

The structure is given in the the entity block which is named

“or2”. Inside the block we have the details of the structure of

the OR-gate, the inputs and outputs which are captured in the

Port statement. Ports are the means which entities can

communicate with other entities using signals. Like maritime

ports which have incoming and outgoing ships, VHDL ports

have incoming and outgoing signals.

 So the Port for the OR-gate has two inputs A and B

and one output Op, which agrees with Fig.2. The inputs and

outputs are assigned a type. So both inputs are assigned as in

and their type is std_logic which means they are a single wire

with standard logic levels. The output Op is assigned as out

and it is also a standard logic type. This is rather like

Nature of Computing 6

declaration of variables in conventional programming, except

that here we must specify both type and direction.

 The functionality of the gate is specified in the

architecture block of code. VHDL supports several ways of

coding, we shall always use the Behavioural architecture.

Here we have a single line of code Op <= A or B which simply

states the Op signal is signal A or signal B, which expresses

the truth table.

 It will come as no surprise that there is an alternative

way of coding the architecture. Here’s how to be a little more

explicit,

Expressed in plain English, this code reads “When A is 0 and

B is 0 then the Op signal becomes 0. Else when A is 1 or B is

1 the Op signal becomes 1”.

We can test that the code is working correctly by running a

simulation. We drive the circuit with all four possible

combinations of A and B and monitor the output. Vivado let’s

us use a separate VHDL ‘TestBench’ file. Since electronic

engineers need to understand the time response of their

circuits, test bench files change inputs over time. Here’t the

simulation for our OR-gate

Chapter 13 Synthesis of Digital Circuits 7

The values of A and B cycle through the four rows of the truth

table, (0,0), (0,1), (1,0) and (1,1) and you can see that the

output is high for three of these. Note that the time scale is

accurate for the Artix-7 FPGA device we are using, the input

signals are changed after 100 nano-seconds which

corresponds to a frequency of 10MHz.

13.2.2 An Example from Logic and Language
In the previous chapter Logic and Language we looked at

how language problems could be mapped onto digital logic,

and in particular how Boolean expressions could be

constructed to solve logical problems. Let’s revisit one

problem here, and see how to code it using VHDL and

synthesise a digital circuit.

 Consider the following Boolean expression expressed

in ‘sum-of-products’ form, comprising two miniterms.

L = A . ~B + A . B

Here’s one way of coding this using VHDL,

Nature of Computing 8

The entity block of code is the same since we have the same

problem structure, two inputs and a single output. The

architecture section introduces a new concept. Note that we

declare two internal signals, ‘miniterm1’ and ‘miniterm2’,

and they are of type std_logic, thus single wires. Think of

these like ‘local’ variables in conventional programming.

This has to be done before the architecture begin statement.

Then we can use these. First we have

which tells us that the signal miniterm1 is produced by A and

not-B (which is the first miniterm). Then we produce the

second mini-term signal

and then we create the ‘sum-of-products’ signal as the Op

signal,

That’s the problem solved. One important point to understand

in the above code. The three statements that create then

combine the mini-terms are not sequential, they could be

written in any order! Remember what VHDL code is doing,

it is wiring up signals, so it doesn’t matter which ones you

wire up first; the circuit will only function when they are all

wired up. These statements are known as concurrent signal

assignment statements (CSAs)

Of course, there is a simpler way of solving this problem

without using internal signals; we could code the Boolean

expression directly as

Chapter 13 Synthesis of Digital Circuits 9

which shows how powerful VHDL is at solving any

combinatorial logic problem expressed as a Boolean

expression.

13.3 The Process Construct
The modelling of more complex components such as memory

and CPUs requires a different approach. We highlighted that

signals, unlike conventional variables, have no memory. So

how can we construct a memory chip. In conventional

programming we would use an array of numbers, each cell

would store a value with the array index as the cell address.

Wouldn’t it be nice if we could use some conventional

constructs in our VHDL code. Well, that’s the purpose of the

Process construct.

13.3.1 The D Flip-Flop
We shall write some VHDL for the D Flip-Flop. Let’s first

remind ourselves of what this is and how it works. Fig.3

shows the circuit symbol for a D flip-flop. There is an input

D and output Q. The reset input when raised high (1) will

reset the flip-flop so the output becomes low, Q = 0. The

detailed behaviour is shown below.

The input on D only passes to the output on a rising edge of

the clock. So at T1 D=1 so this value is transferred to the

output Q. Note later, when D becomes 0, Q remains at 1. Only

Figure 3 D- flip flop with input D, output Q,

clock input Clk and reset input

Nature of Computing 10

at T2 is the value of D=0 clocked through to the output which

then drops to zero, Q = 0. So the flip-flop remembers the

value of D until the next rising clock edge, in other words the

D flip-flop is one bit of memory. In actual circuits, we expect

that the input D changes less frequent than the clock pulse.

 So how do we synthesize a single D flop in VHDL.

Let’s start off ignoring the reset input. Here’s some code.

First check out the Port declaration in the entity block. There

are three signals of type std_logic, D and Clk are inputs and

there is an output Q.

 Now look at the new construct, the process. Note it

has its own begin and end. What do we find inside the process

block, well lookie here, we have an if-then statement from

Chapter 13 Synthesis of Digital Circuits 11

conventional programming! Hey, that’s fantastic, so we can

use conventional programming inside the process. So what’s

going on here? Well the statement

is simply saying “if there is a rising Clk edge, then the input

signal is transferred to the output signal which is what we

want. The function call to rising_edge(Clk) is built in to

VHDL. Now look at the start of the process block and you

will see we have process(Clk). Here, Clk is not a parameter.

Process is not a conventional function, we can only use

conventional programming within the process block. So if

this is not a parameter, what is it? Well any signal in those

brackets is part of the sensitivity list which is a list of signals

which cause the code in the process block to execute, when

they change. So in this case, when Clk changes, the process

block will execute as described above.

 Now we can extend this code to deal with the reset

input, let’s see how the process block has changed.

We now have a full if-then-else inside the process. We first

test for reset and if this is 1 then we set the output signal to 0.

Note the syntax, the single quotes means we are setting a

single wire or bit. Then we test for a rising clock edge as

Nature of Computing 12

before. Glance at the sensitivity list, we have now added reset

to this, so that the process will respond to changes in the reset

signal.

 Before we move on, let’s have a look at the testbench

waveform for the D flip-flop with reset.

There are two things to note. First, when reset is high the

output goes low Q = 0. Second look at the rising clock edges

and check that the value of D at that time is transferred to Q.

Check that Q does not change except at certain rising clock

edges.

13.3.2 VHDL for RAM
Let’s now turn to synthesizing memory. We mentioned above

that a D flop is one bit of memory, so we could assemble a

load of D flops. Sure that would work, but it would be hard

work for us, why not let the VHDL compiler do this work.

First let’s look at the signals (port) into and out of memory,

see Fig.4. The thick arrows represent buses, collections of

wires. We need a way of getting data into and out of memory,

so we have two data buses. We choose to have these 16 bits

wide. These buses feed into an array of memory cells, each

one with an address. So we need an address bus which is an

input. We choose to have this 3 bits wide which will give us

8 memory cells. Finally we need two control signals to

indicate whether we are reading (mR) from memory or

writing (mW) to it. If mR = ‘1’ then we are reading and if

mW = ‘1’ then we are writing.

 So how do we go about writing our VHDL? I gave

you a hint above when I referred to an array of memory cells,

and we know that we can use conventional code constructs

inside a process, so let’s use a conventional array!

Figure 4RAM showing input and output data buses,

input memory address and read / write control

signals

Chapter 13 Synthesis of Digital Circuits 13

Let’s have a look at the complete code and first hunt down

this array. On line 21 we declare a type “ram_type” and state

that this is an array. We state the indices go from (0 to 7) so

we have our 8 array elements, and they are of type

std_logic_vector (which is a bunch of signals) and they are

16 bits wide, with indices going from (15 downto 0). Then

on line 22 we declare a new (local) signal “RAM” of

ram_type, and we initialize it with values (lines 23-30). Note

the := operator. This means we are assigning a conventional

programming variable, and not a signal where we use <=. The

syntax := first appeared in Pascal (I think). The contents of

each memory row is initialized as a hexadecimal number

hence the X in X”1000”. We have a 16 bit number, and each

hexadecimal digit (called a nibble – half a byte) is 4 bits wide.

So we need 4 hex digits to represent each 16 bit data value.

 Now let’s check out the entity declaration and we see

(i) the address bus of 3 bits, (ii) the 16-bit read_data bus

(output), (iii) the 16-bit write_data bus (input) and two single

signals mRead and mWrite. All of this should make sense.

 Now back to the architecture section, and inside the

process we find an if-then-else conventional construct. If

mRead = ‘1’ then we must read out data. So (line 38) we get

the value of the address and use this as the index into our

RAM array, and output the result to the signal bus read_data.

Else if mWrite = ‘1’ we are to write data into memory (line

40). The function conv_integer(address) converts the

address (which is a signal) into an integer which is used as

index into the array.

Nature of Computing 14

Chapter 13 Synthesis of Digital Circuits 15

13.4 Finite State Machines
Imagine we have been commissioned to design and develop

a digital system to open a door when a correct 4-digit pin code

is entered. How would we approach this? Using a finite state

machine (FSM) is a great design choice. Let’s say we have

four buttons and we must press them in this order B3 B1 B2

B4. If we get any button out of order, then the FSM needs to

return to the starting state. Fig.5 shows the FSM structure.

The starting state is stateA and you can see how the machine

progresses through the states as the correct button is pressed

in sequence, any incorrect button will send the machine

straight back to stateA.

 So how to approach coding this in VHDL? Well, if

we were programming this conventionally, we could easily

use a switch(…) construct like this

but we know we can use conventional programming

constructs inside a process and the switch is no exception, Si

here is some VHDL code to do this. You will see that we use

two process blocks, one to change state, and the second to

provide the unlock signal based on the state.

Figure 5 FSM for the 4-button pin-code lock.

Nature of Computing 16

Here's the VHDL for the next state logic. You can clearly see

the FSM case statements, and correct button testing using if-

then-else construct. Also a reset button has been included.

Look at the sensitivity list, any signal that changes and needs

to be used within the process must appear here.

The second process creates the unlock signal based on the

current state. This is a list of conditionals using the keyword

when.

So we have two processes. How should we view their

operation. Remember that VHDL is describing how to wire

things up. Within each process there can be selections or

waits going on. So a process is sequential. But all processes

Chapter 13 Synthesis of Digital Circuits 17

operate concurrently. Each process produces its own

associated electronic hardware which will usually contain

sequential components. But the two chunks of hardware

produced by two processes will execute concurrently.

13.5. Further Examples

13.5.1 Car Alarm
Let’s say we are designing a car alarm. There is a door sensor,

D=0 when the door is closed and D=1 when the door is open.

There is an ultrasonic detector U=0 when there is no motion

in the car and U=1 when it detects motion. Finally, the alarm

is armed with a key when K=1, and the alarm is turned off

when K=0. The truth table that describes this scenario is

shown in Fig.6 where the final column indicates if the horn H

is off H=0, or on H=1.

 Of course this is fine, but it won’t really work.

Imagine the system is armed, K=1, then the door is opened,

D=1, so the horn sounds, H=1. But as soon as the door is

closed, D = 0, then the horn will stop sounding, not exactly a

useful alarm. So we have to remember when the alarm has

been activated and keep the horn sounding until the alarm is

deactivated, K = 0. This is clearly a job for a FSM. Here’s a

possible solution. The triples are values of KDU in that order.

These will translate to a VDHL type std_logic_vector (2

downto 0). In stateA the horn is off, and in stateB it is on.

Starting in stateA if the alarm is armed (K=1) then we transit

Figure 6 Truth table for car alarm problem.

Nature of Computing 18

to stateB is the door is open, KDU = “110”, or if the ultrasonic

sensor is activated, KDU=”101”, or both KDU=”111”. You

can see that the only way back from stateB to stateA is when

K=’0’, i.e. the triples KDU = “000”, “001”, “010”, “011”.

 There are several ways to code this FSM using

VHDL, of course we always strive for optimality. So here’s

one good solution. There are two process blocks, one to make

the state transitions and the other to send the correct signal to

the Horn. Remember both synthesized circuits will run in

parallel. Before the FSM, we need to declare a type statetype

and initialize the starting state,

Here's the next_state_logic process

The two states are used in the case statement. The three

possible transitions into stateB are coded explicitly using the

Chapter 13 Synthesis of Digital Circuits 19

three possible values of KDU. This is straightforward. To

transit from stateB to stateA we use a trick. Since this transit

will occur only if K = ‘0’, then we test explicitly for this bit

condition if(KDU(2) = ‘0’) then. The second process block is

straightforward

Finally, a couple of points. Note the contents of the sensitivity

lists of both processes and remember these are the things the

process is sensitive to, i.e., those things that will make the

process run. Second note that I have written some very sloppy

code with a mix of upper and lower case for VHDL

keywords. At least this tells you one thing, that for these

words VHDL is not case-sensitive! The testbench simulation

produces the following showing the expected transitions.

The horn starts sounding when the lowest bit of KDU (which

is U) goes high. Note also that the horn remains on when D

and U have dropped to zero, and only turns off shortly after

500 ns when K is dropped to zero.

Nature of Computing 20

13.5.2 Counters
Counters are very useful things, e.g., you could store a

musical melody in a RAM and use a counter to provide the

address to select the melody notes. A simple counter is an n-

bit binary counter which starts at 0 and ends at the number

2𝑛 − 1. So a 4-but counter would count from 0 to 15 (or 0 to

F in hex).

 Counters are simple to code, if we use a process block

and inside that conventional coding. Here’s an example.

The entity tells us that the counter is being driven by a clock

and that it has a reset input. In the architecture section we

declare a signal variable count_up. The process(clk, reset) is

sensitive to changes in clk and reset. The conventional code

is straightforward, we use an if-then-else to test for a reset

whence we set count_up to zero, else look for a rising clock

Chapter 13 Synthesis of Digital Circuits 21

edge, and if we have one then we increment the value of

count_up by a conventional addition. Outside of the process

block, we send the current value of count_up to the output

signal. Remember this line and the entire process block are

concurrent, the circuitry for both runs at the same time.

 What happens when the count reaches 2𝑛 − 1 and we

do a further addition. A peek at the testbench waveform will

help. When the output reaches this value (hex f) then it returns

to zero because adding a 1 to f (binary 1111) will produce a

1 on the overflow bit, and the other bits revert to 0.

13.6 Structural Architecture
So far we have been using the Behavioural architecture which

is particularly suited to the synthesis of small, often complex

devices. But often we are faced with a situation where the

device we wish to synthesize is complex, with many

components such as an entire CPU. In such cases we retain

the behavioural architecture for each component, but we

connect the components together through their Ports. This is

the structural architecture, which operates at a higher level.

 As an example we shall consider a 4-bit adder which

sums the values of two 4-bit numbers A and B. The building

block is a bit-slice full adder shown in Fig.7. This takes two

single-bit inputs A0 and B0 and outputs the sum S0 and any

carry C1. So if A=0, B=1 then S=1 and C=0. If A=1, B=1

then S=0 and C1=1. There is also a carry-in C0. Clearly such

bit-slices can be combined to add multi-bit numbers, we shall

Figure 7 Single bit-slice full adder

Nature of Computing 22

see this shortly, but first we must understand a single bit slice.

The truth table and associated circuit made from gates is

shown in Fig.8. From this it is straightforward to write the

behavioural VHDL shown below where we specify the

behaviour using standard logic.

Now to create a 4-bit adder we must chain four of these bit-

slices together like this.

Figure 8 Truth table and gates forming a single bit

full adder.

Chapter 13 Synthesis of Digital Circuits 23

Each slice handles one bit of each number A and B. These

numbers will have range ‘0000’ to ‘1111’. The lowest-order

bit is shown on the right and the highest on the left. If there is

a carry on any bit, then this is passed to the left, just as a carry

when we add numbers on paper.

 This architecture is interesting since we use the same

component four times, and this shouts out Structural

architecture. The required VHDL code is shown below.

We declare an entity as usual with its Port (lines 11-15). Then

on line 18 we state that we are using the Structural

architecture. We must now declare any components we are

going to connect together, in this case there is only one (lines

21-27) although we shall use it 4 times.

 The actual circuit construction takes place lines 30-33

where we create four examples of a fullAdderSlice

component and label them (stage0 to stage3) following the

block diagram above. Here we map the port values for each

Nature of Computing 24

component, they are given in lines 22-26. Let’s start with

stage0. The first port value is input A. We assign this to X(0)

which is the lowest bit of the first number we input into our

4-bit adder (see line 12). The next port value, input B comes

from Y(0), the lowest bit of the second number we input into

this adder (line 13). Then we assign the next port value Cin

from the adder Cin (line11). The next port value is the Sum

out, so we assign this to S(0) the lowest bit of our added (line

14). Finally we capture C(0) the carry output from stage0.

This local variable is declared on line 19.

 Now we proceed left-to-right along the chain. Glance

at the block diagram above. At stage1 we input the next adder

bit X(1) for the first number and the next bit Y(1) for the

second number, then we input any carry C(1) from stage0.

Finally we send the sum to our adder sum S(1) and store any

carry from this bit in C(2) ready to go into stage2. And so on

to complete the chain.

 A testbench waveform is shown below where we have

added the following pairs of numbers: A = “0110” B =

“0001”, then A = “0110” B = “0010”, then A = “0110” B =

“0100”, then A = “0110” B = “0110” and finally A = “0110”

B = “0111”. You can see the adder is working correctly.

