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Chapter 13 
Synthesis of Digital Circuits 

13.1 A brief Introduction 
When designing a new computing system, the computer 

engineer is faced with a number of choices. These include the 

programming paradigm1, the programming language, and the 

hardware on which the system will run. Hardware design 

often starts with the choice of the CPU or MPU; do we need 

something like a Pentium or alternatively like an ATMega328 

MPU (used on the Arduino) or a Cortex MPU used on more 

powerful Arduino variants? Or should we choose a Digital 

Signal Processing (DSP) chip, which is usually the case if our 

system is to handle audio or video data. Across the huge range 

of choices we have, we find different characteristics such as 

clock speed, bus width, functionality and cost. 

 At this point a couple of questions spring to mind. 

First, how is the digital electronic circuitry on each of these 

chips designed? Second, how can we design and synthesise a 

completely new chip for a bespoke application? In the early 

days of electronic engineering, a computer system was 

designed and developed ‘on paper’ then ‘by hand’ using 

discrete chips and breadboards. This is how I created the 8-

bit data-processing computer ‘Condac-85’ some years ago. 

This is no longer the case. Today’s engineers have CAD tools 

where the electronic circuitry design is done in software 

which specifies how digital functional blocks are connected 

using signals (which run along wires). 

 A typical workflow is shown in the diagram below. 

On the left is a block diagram of a simple CPU which we need 

 
1 ‘Paradigms’ are not languages! They are a higher-level description of 

the style of programming. The one you are used to is imperative (C, 

Java, C#). The functional paradigm has no assignments, functions are 

applied to arguments (Scheme). The logical paradigm specifies facts and 

inference rules, and asks if something is true, the program goal (Prolog). 
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to create using digital circuitry; there is a lot of functionality 

behind this block diagram which we capture in some sort of 

specification document (or hold in our heads or in 

conversations). The first stage in synthesis is to convert this 

diagram and its functionality into a computer language which 

has been designed to support digital circuitry. This is a 

‘Hardware Description Language’ (HDL). When the 

computer program describing the block diagram is complete, 

we call the compiler, which synthesizes the design into a ‘net’ 

list. 

This net list describes how various electronic building blocks 

are wired up to create our desired functionality. The final 

stage is to upload a representation of this list to our target 

device, which is a ‘Field Programmable Gate Array’ (FPGA). 

The one we shall use is the Arty-A7 board shown on the right, 

the software is ‘Vivaldo’ from Xilinx, now a part of AMD. 

 The takeaway point is that when we code in VHDL, 

we are not programming a CPU, but we are physically wiring 

up an electronic circuit. This happens inside the FPGA, so 

let’s see what an FPGA actually is. To do this let’s compare 

the hardware architecture of the MPU in a typical Arduino 

shown in Fig.1 (top) with the architecture of a FPGA shown 

in Fig.1 (bottom). 

 The MPU has a clear and specific architecture with 

various functional blocks connected via signal wires and 
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signal buses. There are also signal wires connected to the 

external environment which ultimately appear as Arduino 

input and output pins. Now consider the architecture of the 

FPGA. At first glance it appears that there is no architecture 

at all! All we have appears to be an array of ‘blobs’ connected 

by wires. Well, the technical term for these ‘blobs’ is 

‘Configurable Logic Blocks’ (CLBs). Each CLB will contain 

some look-up tables (implemented using RAM) and some 

flip-flops which can provide sequences of operations. 

Running horizontally and vertically between the CLBs are 

loads of wires, and each CLB can connect to any of these 

wires which run next to the CLB. Also, at the intersections of 

the horizontal and vertical wires are a load of switches which 

can connect horizontal with vertical, a ‘matrix’ of switches. 

 The point is that all of these switches and connexions 

are programmable, and this is how it works. The HDL 

captures the digital design, and then when it uploads to the 

FPGA chip, it makes the correct CLB-wire connexions and 

switch connexions to create ‘synthesize’ the digital design. 

So at this point, our desired CPU runs on full-speed hardware, 

the design has become hardware. One may say on a 

theological level, that our hardware design has become 

incarnate in the FPGA. 

 

13.2 Introduction to VHDL 
Our job will be to use a HDL to create a number of digital 

circuits from a simple door-lock to a simple CPU (the one 

shown above). The specific language we shall use is ‘VHDL’ 

which stands for VHSIC Hardware Description Language 

where the acronym VHSIC in turn stands for Very High 

Speed Integrated Circuit. Just call me ‘VHDL’. 

There is one fundamental difference between the basic code 

object we use in conventional programming and those used 

in VHDL. The languages we have used so far manipulate 

Figure 1 Top shows the architecture of a 

Mega328 MPU chip, bottom shows the 

architecture of a FPGA. 
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basic objects called variables. They may be assigned a value, 

and they retain (remember) that value, e.g., the statement 

dist = distArray[index]; 
 

grabs the value in the array distArray at the index, and assigns 

it to the variable dist. From this point on dist will have this 

value unless it is changed. In VHDL the basic object is a 

signal which is a voltage (LOW or HIGH) which resides on 

a wire. So we could have the statement 

 

output <= input; 
 

This states that the signal on the output wire is identical to the 

signal on the input wire for all time. So if the input signal 

changes the output signal will change too. There is no 

memory implied here. Note the <= operator which reminds us 

that we are dealing with signals rather than procedural 

assignments = . 

 

13.2.1 VHDL code for the Or-gate 
Let’s consider just a simple OR-gate. Sure, we’d never use 

VHDL to actually model this, but it’s a good place to learn 

some basic syntax.  

 Let’s review the structure and functionality of the OR-

gate; see Fig.2. Here the structure is shown at the top. There 

are two inputs A and B and an output Op. Of course this 

structure is not unique to the OR-gate, all two-input logic 

gates have the same structure. It’s the functionality which is 

unique to each gate type; this is represented as a truth table. 

The code for the OR-gate reflects this structure and 

functionality, separating them into two separate blocks of 

code. Here’s the entire code, where I’ve retained the VHDL 

coloring. 

 

Figure 2 OR-gate. Top shows the  structure and 

bottom shows functionality. 
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The structure is given in the the entity block which is named 

“or2”. Inside the block we have the details of the structure of 

the OR-gate, the inputs and outputs which are captured in the 

Port statement. Ports are the means which entities can 

communicate with other entities using signals. Like maritime 

ports which have incoming and outgoing ships, VHDL ports 

have incoming and outgoing signals. 

 So the Port for the OR-gate has two inputs A and B 

and one output Op, which agrees with Fig.2. The inputs and 

outputs are assigned a type. So both inputs are assigned as in 

and their type is std_logic which means they are a single wire 

with standard logic levels. The output Op is assigned as out 

and it is also a standard logic type. This is rather like 
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declaration of variables in conventional programming, except 

that here we must specify both type and direction. 

 The functionality of the gate is specified in the 

architecture block of code. VHDL supports several ways of 

coding, we shall always use the Behavioural architecture. 

Here we have a single line of code Op <= A or B which simply 

states the Op signal is signal A or signal B, which expresses 

the truth table. 

 It will come as no surprise that there is an alternative 

way of coding the architecture. Here’s how to be a little more 

explicit, 

 
 

 

Expressed in plain English, this code reads “When A is 0 and 

B is 0 then the Op signal becomes 0. Else when A is 1 or B is 

1 the Op signal becomes 1”. 

We can test that the code is working correctly by running a 

simulation. We drive the circuit with all four possible 

combinations of A and B and monitor the output. Vivado let’s 

us use a separate VHDL ‘TestBench’ file. Since electronic 

engineers need to understand the time response of their 

circuits, test bench files change inputs over time. Here’t the 

simulation for  our OR-gate 
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The values of A and B cycle through the four rows of the truth 

table, (0,0), (0,1), (1,0) and (1,1) and you can see that the 

output is high for three of these. Note that the time scale is 

accurate for the Artix-7 FPGA device we are using, the input 

signals are changed after 100 nano-seconds which 

corresponds to a frequency of 10MHz. 

13.2.2 An Example from Logic and Language 
In the previous chapter Logic and Language we looked at 

how language problems could be mapped onto digital logic, 

and in particular how Boolean expressions could be 

constructed to solve logical problems. Let’s revisit one 

problem here, and see how to code it using VHDL and 

synthesise a digital circuit. 

 Consider the following Boolean expression expressed 

in ‘sum-of-products’ form, comprising two miniterms. 

L = A . ~B  +  A . B 
 

Here’s one way of coding this using VHDL, 
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The entity block of code is the same since we have the same 

problem structure, two inputs and a single output. The 

architecture section introduces a new concept. Note that we 

declare two internal signals, ‘miniterm1’ and ‘miniterm2’, 

and they are of type std_logic, thus single wires. Think of 

these like ‘local’ variables in conventional programming. 

This has to be done before the architecture begin statement. 

Then we can use these. First we have 

 
 

which tells us that the signal miniterm1 is produced by A and 

not-B (which is the first miniterm). Then we produce the 

second mini-term signal 

 
 

and then we create the ‘sum-of-products’ signal as the Op 

signal, 

 
 

 

That’s the problem solved. One important point to understand 

in the above code. The three statements that create then 

combine the mini-terms are not sequential, they could be 

written in any order! Remember what VHDL code is doing, 

it is wiring up signals, so it doesn’t matter which ones you 

wire up first; the circuit will only function when they are all 

wired up. These statements are known as concurrent signal 

assignment statements (CSAs) 

Of course, there is a simpler way of solving this problem 

without using internal signals; we could code the Boolean 

expression directly as 
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which shows how powerful VHDL is at solving any 

combinatorial logic problem expressed as a Boolean 

expression. 

13.3 The Process Construct 
The modelling of more complex components such as memory 

and CPUs requires a different approach. We highlighted that 

signals, unlike conventional variables, have no memory. So 

how can we construct a memory chip. In conventional 

programming we would use an array of numbers, each cell 

would store a value with the array index as the cell address. 

Wouldn’t it be nice if we could use some conventional 

constructs in our VHDL code. Well, that’s the purpose of the 

Process construct. 

13.3.1 The D Flip-Flop 
We shall write some VHDL for the D Flip-Flop. Let’s first 

remind ourselves of what this is and how it works. Fig.3 

shows the circuit symbol for a D flip-flop. There is an input 

D and output Q. The reset input when raised high (1) will 

reset the flip-flop so the output becomes low, Q = 0. The 

detailed behaviour is shown below. 

 

The input on D only passes to the output on a rising edge of 

the clock. So at T1 D=1 so this value is transferred to the 

output Q. Note later, when D becomes 0, Q remains at 1. Only 

Figure 3 D- flip flop with input D, output Q, 

clock input Clk and reset input 
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at T2 is the value of D=0 clocked through to the output which 

then drops to zero, Q = 0. So the flip-flop remembers the 

value of D until the next rising clock edge, in other words the 

D flip-flop is one bit of memory. In actual circuits, we expect 

that the input D changes less frequent than the clock pulse. 

 So how do we synthesize a single D flop in VHDL. 

Let’s start off ignoring the reset input. Here’s some code. 

 
 

 

First check out the Port declaration in the entity block. There 

are three signals of type std_logic, D and Clk are inputs and 

there is an output Q.  

 Now look at the new construct, the process. Note it 

has its own begin and end. What do we find inside the process 

block, well lookie here, we have an if-then statement from 
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conventional programming! Hey, that’s fantastic, so we can 

use conventional programming inside the process. So what’s 

going on here? Well the statement 

 
 

is simply saying “if there is a rising Clk edge, then the input 

signal is transferred to the output signal which is what we 

want. The function call to rising_edge(Clk) is built in to 

VHDL. Now look at the start of the process block and you 

will see we have process(Clk). Here, Clk is not a parameter. 

Process is not a conventional function, we can only use 

conventional programming within the process block. So if 

this is not a parameter, what is it? Well any signal in those 

brackets is part of the sensitivity list which is a list of signals 

which cause the code in the process block to execute, when 

they change. So in this case, when Clk changes, the process 

block will execute as described above. 

 Now we can extend this code to deal with the reset 

input, let’s see how the process block has changed. 

 
 

 

We now have a full if-then-else inside the process. We first 

test for reset and if this is 1 then we set the output signal to 0. 

Note the syntax, the single quotes means we are setting a 

single wire or bit. Then we test for a rising clock edge as 
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before. Glance at the sensitivity list, we have now added reset 

to this, so that the process will respond to changes in the reset 

signal. 

 Before we move on, let’s have a look at the testbench 

waveform for the D flip-flop with reset. 

 
 

There are two things to note. First, when reset is high the 

output goes low Q = 0. Second look at the rising clock edges 

and check that the value of D at that time is transferred to Q. 

Check that Q does not change except at certain rising clock 

edges. 

13.3.2 VHDL for RAM 
Let’s now turn to synthesizing memory. We mentioned above 

that a D flop is one bit of memory, so we could assemble a 

load of D flops. Sure that would work, but it would be hard 

work for us, why not let the VHDL compiler do this work. 

First let’s look at the signals (port) into and out of memory, 

see Fig.4. The thick arrows represent buses, collections of 

wires. We need a way of getting data into and out of memory, 

so we have two data buses. We choose to have these 16 bits 

wide. These buses feed into an array of memory cells, each 

one with an address. So we need an address bus which is an 

input. We choose to have this 3 bits wide which will give us 

8 memory cells. Finally we need two control signals to 

indicate whether we are reading (mR) from memory or 

writing (mW) to it. If mR = ‘1’ then we are reading and if 

mW = ‘1’ then we are writing. 

 So how do we go about writing our VHDL? I gave 

you a hint above when I referred to an array of memory cells, 

and we know that we can use conventional code constructs 

inside a process, so let’s use a conventional array!  

Figure 4RAM showing input and output data buses, 

input memory address and read / write control 

signals 
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Let’s have a look at the complete code and first hunt down 

this array. On line 21 we declare a type “ram_type” and state 

that this is an array. We state the indices go from (0 to 7) so 

we have our 8 array elements, and they are of type 

std_logic_vector (which is a bunch of signals) and they are 

16 bits wide, with indices going from (15 downto 0). Then 

on line 22 we declare a new (local) signal “RAM” of 

ram_type, and we initialize it with values (lines 23-30). Note 

the := operator. This means we are assigning a conventional 

programming variable, and not a signal where we use <=. The 

syntax := first appeared in Pascal (I think). The contents of 

each memory row is initialized as a hexadecimal number 

hence the X in X”1000”. We have a 16 bit number, and each 

hexadecimal digit (called a nibble – half a byte) is 4 bits wide. 

So we need 4 hex digits to represent each 16 bit data value. 

 Now let’s check out the entity declaration and we see 

(i) the address bus of 3 bits, (ii) the 16-bit read_data bus 

(output), (iii) the 16-bit write_data bus (input) and two single 

signals mRead and mWrite. All of this should make sense. 

 Now back to the architecture section, and inside the 

process we find an if-then-else conventional construct. If 

mRead = ‘1’ then we must read out data. So (line 38) we get 

the value of the address and use this as the index into our 

RAM array, and output the result to the signal bus read_data. 

Else if mWrite = ‘1’ we are to write data into memory (line 

40). The function conv_integer(address) converts the 

address (which is a signal) into an integer which is used as 

index into the array. 
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13.4 Finite State Machines 
Imagine we have been commissioned to design and develop 

a digital system to open a door when a correct 4-digit pin code 

is entered. How would we approach this? Using a finite state 

machine (FSM) is a great design choice. Let’s say we have 

four buttons and we must press them in this order B3 B1 B2 

B4. If we get any button out of order, then the FSM needs to 

return to the starting state. Fig.5 shows the FSM structure. 

The starting state is stateA and you can see how the machine 

progresses through the states as the correct button is pressed 

in sequence, any incorrect button will send the machine 

straight back to stateA. 

 So how to approach coding this in VHDL? Well, if 

we were programming this conventionally, we could easily 

use a switch(…) construct like this 

 
 

 

but we know we can use conventional programming 

constructs inside a process and the switch is no exception, Si 

here is some VHDL code to do this. You will see that we use 

two process blocks, one to change state, and the second to 

provide the unlock signal based on the state. 

Figure 5 FSM for the 4-button pin-code lock. 
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Here's the VHDL for the next state logic. You can clearly see 

the FSM case statements, and correct button testing using if-

then-else construct. Also a reset button has been included. 

Look at the sensitivity list, any signal that changes and needs 

to be used within the process must appear here. 

 
 

The second process creates the unlock signal based on the 

current state. This is a list of conditionals using the keyword 

when. 

 
 

So we have two processes. How should we view their 

operation. Remember that VHDL is describing how to wire 

things up. Within each process there can be selections or 

waits going on. So a process is sequential. But all processes 
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operate concurrently. Each process produces its own 

associated electronic hardware which will usually contain 

sequential components. But the two chunks of hardware 

produced by two processes will execute concurrently.  

13.5. Further Examples 

13.5.1 Car Alarm 
Let’s say we are designing a car alarm. There is a door sensor, 

D=0 when the door is closed and D=1 when the door is open. 

There is an ultrasonic detector U=0 when there is no motion 

in the car and U=1 when it detects motion. Finally, the alarm 

is armed with a key when K=1, and the alarm is turned off 

when K=0. The truth table that describes this scenario is 

shown in Fig.6 where the final column indicates if the horn H 

is off H=0, or on H=1. 

 Of course this is fine, but it won’t really work. 

Imagine the system is armed, K=1, then the door is opened, 

D=1, so the horn sounds, H=1. But as soon as the door is 

closed, D = 0, then the horn will stop sounding, not exactly a 

useful alarm. So we have to remember when the alarm has 

been activated and keep the horn sounding until the alarm is 

deactivated, K = 0. This is clearly a job for a FSM. Here’s a 

possible solution. The triples are values of KDU in that order. 

These will translate to a VDHL type std_logic_vector (2 

downto 0). In stateA the horn is off, and in stateB it is on. 

Starting in stateA if the alarm is armed (K=1) then we transit 

Figure 6 Truth table for car alarm problem. 
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to stateB is the door is open, KDU = “110”, or if the ultrasonic 

sensor is activated, KDU=”101”, or both KDU=”111”. You 

can see that the only way back from stateB to stateA is when 

K=’0’, i.e. the triples KDU = “000”, “001”, “010”, “011”. 

 There are several ways to code this FSM using 

VHDL, of course we always strive for optimality. So here’s 

one good solution. There are two process blocks, one to make 

the state transitions and the other to send the correct signal to 

the Horn. Remember both synthesized circuits will run in 

parallel. Before the FSM, we need to declare a type statetype 

and initialize the starting state, 

 
 

Here's the next_state_logic process 

 
 

 

The two states are used in the case statement. The three 

possible transitions into stateB are coded explicitly using the 
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three possible values of KDU. This is straightforward. To 

transit from stateB to stateA we use a trick. Since this transit 

will occur only if K = ‘0’, then we test explicitly for this bit 

condition  if(KDU(2) = ‘0’) then. The second process block is 

straightforward 

 
 

 

Finally, a couple of points. Note the contents of the sensitivity 

lists of both processes and remember these are the things the 

process is sensitive to, i.e., those things that will make the 

process run. Second note that I have written some very sloppy 

code with a mix of upper and lower case for VHDL 

keywords. At least this tells you one thing, that for these 

words VHDL is not case-sensitive! The testbench simulation 

produces the following showing the expected transitions. 

 
 

 

The horn starts sounding when the lowest bit of KDU (which 

is U) goes high. Note also that the horn remains on when D 

and U have dropped to zero, and only turns off shortly after 

500 ns when K is dropped to zero. 
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13.5.2 Counters 
Counters are very useful things, e.g., you could store a 

musical melody in a RAM and use a counter to provide the 

address to select the melody notes. A simple counter is an n-

bit binary counter which starts at 0 and ends at the number 

2𝑛 − 1. So a 4-but counter would count from 0 to 15 (or 0 to 

F in hex). 

 Counters are simple to code, if we use a process block 

and inside that conventional coding. Here’s an example. 

 
 

The entity tells us that the counter is being driven by a clock 

and that it has a reset input. In the architecture section we 

declare a signal variable count_up. The process(clk, reset) is 

sensitive to changes in clk and reset. The conventional code 

is straightforward, we use an if-then-else to test for a reset 

whence we set count_up to zero, else look for a rising clock 



Chapter 13 Synthesis of Digital Circuits  21 
 

edge, and if we have one then we increment the value of 

count_up by a conventional addition. Outside of the process 

block, we send the current value of count_up to the output 

signal. Remember this line and the entire process block are 

concurrent, the circuitry for both runs at the same time. 

 What happens when the count reaches 2𝑛 − 1 and we 

do a further addition. A peek at the testbench waveform will 

help. When the output reaches this value (hex f) then it returns 

 
 

 

to zero because adding a 1 to f (binary 1111) will produce a 

1 on the overflow bit, and the other bits revert to 0. 

13.6 Structural Architecture 
So far we have been using the Behavioural architecture which 

is particularly suited to the synthesis of small, often complex 

devices. But often we are faced with a situation where the 

device we wish to synthesize is complex, with many 

components such as an entire CPU. In such cases we retain 

the behavioural architecture for each component, but we 

connect the components together through their Ports. This is 

the structural architecture, which operates at a higher level. 

 As an example we shall consider a 4-bit adder which 

sums the values of two 4-bit numbers A and B. The building 

block is a bit-slice full adder shown in Fig.7. This takes two 

single-bit inputs A0 and B0 and outputs the sum S0 and any 

carry C1. So if A=0, B=1 then S=1 and C=0. If A=1, B=1 

then S=0 and C1=1. There is also a carry-in C0. Clearly such 

bit-slices can be combined to add multi-bit numbers, we shall 

Figure 7 Single bit-slice full adder 
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see this shortly, but first we must understand a single bit slice. 

The truth table and associated circuit made from gates is 

shown in Fig.8. From this it is straightforward to write the 

behavioural VHDL shown below where we specify the 

behaviour using standard logic. 

 
 

Now to create a 4-bit adder we must chain four of these bit-

slices together like this. 

 
 

Figure 8 Truth table and gates forming a single bit 

full adder. 
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Each slice handles one bit of each number A and B. These 

numbers will have range ‘0000’ to ‘1111’. The lowest-order 

bit is shown on the right and the highest on the left. If there is 

a carry on any bit, then this is passed to the left, just as a carry 

when we add numbers on paper. 

 This architecture is interesting since we use the same 

component four times, and this shouts out Structural 

architecture. The required VHDL code is shown below. 

 
 

We declare an entity as usual with its Port (lines 11-15). Then 

on line 18 we state that we are using the Structural 

architecture. We must now declare any components we are 

going to connect together, in this case there is only one (lines 

21-27) although we shall use it 4 times. 

 The actual circuit construction takes place lines 30-33 

where we create four examples of a fullAdderSlice 

component and label them (stage0 to stage3) following the 

block diagram above. Here we map the port values for each 
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component, they are given in lines 22-26. Let’s start with 

stage0. The first port value is input A. We assign this to X(0) 

which is the lowest bit of the first number we input into our 

4-bit adder (see line 12). The next port value, input B comes 

from Y(0), the lowest bit of the second number we input into 

this adder (line 13). Then we assign the next port value Cin 

from the adder Cin (line11). The next port value is the Sum 

out, so we assign this to S(0) the lowest bit of our added (line 

14). Finally we capture C(0) the carry output from stage0. 

This local variable is declared on line 19. 

 Now we proceed left-to-right along the chain. Glance 

at the block diagram above. At stage1 we input the next adder 

bit X(1) for the first number and the next bit Y(1) for the 

second number, then we input  any carry C(1) from stage0. 

Finally we send the sum to our adder sum S(1) and store any 

carry from this bit in C(2) ready to go into stage2. And so on 

to complete the chain. 

 A testbench waveform is shown below where we have 

added the following pairs of numbers: A = “0110” B = 

“0001”, then A = “0110” B = “0010”, then A = “0110” B = 

“0100”, then A = “0110” B = “0110” and finally A = “0110” 

B = “0111”. You can see the adder is working correctly. 

 
 

 

 


