
Chapter 11 Logic and Language 1 
 

Chapter 11 
Logic and Language 

11.1 A brief Introduction 
There are a number of fundamentals in existence, and here I 

mention just two. The first concerns language. You are 

reading the text that I wrote for you, and in writing I held you 

in mind in order to persuade, or cajole you in understanding 

some ideas. So language is more than communication; it can 

provide explanation and so lead to understanding.  

More formally, language can be used to express an argument 

or a proof; you will find such language in a court of law where 

prosecution and defence lawyers produce argument and 

counter-arguments in order to establish the guilt or innocence 

of the one on trial. In fact, it was the  dream of the 

mathematician Leibnitz1 to produce a system which could 

automate the resolution of such courtroom arguments. 

Let’s think for a moment of the following argument: 

If there is a fault, then it will explode. 
There is no fault. 
Therefore it will not explode. 

Do you think this argument is true? Sure, it is very appealing, 

but it turns out it is false, and we shall see why. 

The second fundamental is the idea of symbols and things 

they represent. We are all familiar with this symbol      

which represents an emotion. Or the symbol x in the code 

statement int x = 0; where the symbol x represents an integer 

number. The crucial thing about symbols is that they can 

represent concepts, even language clauses, e.g., in the above 

proof we could represent the second clause by the symbol P 

and write P = There is no fault 

 
1  



Nature of Computing      2 
 

The third fundamental I wish to introduce here is the 

ubiquitous NAND gate, see Fig.1. It turns out that the 

electronics of an entire computer (both CPU and memory) 

can be made exclusively from NAND gates. So we don’t 

actually need AND, OR and NOT gates and others too. Also 

the NAND gate is closely linked to language. 

11.2 The Laws of Thought 
Digital logic was given to us by the Englishman George 

Boole (1815 – 1864), though this was not then electronic 

digital logic (of course not!). It was the American Claude 

Shannon (1916 – 2001) who used Boolean Logic Algebra to 

construct telephone switching circuits. 

Here we shall follow Boole’s development of Logic from his 

treatise ‘The Laws of Thought’ (1854). Boole starts off by 

discussing the fact that symbols can represent concepts or 

language statements at great length.  

Consider the following: X = ‘things that are birds’ where the 

symbol X is clearly representing birds. It’s informative to 

express this as a diagram. 

 

 
 

So all birds are inside the blue circle. Everything else that is 

not a bird is outside the circle. So we have divided reality into 

two sets (or classes) based on whether or not the thing we are 

looking at is a bird or not. 

11.2.1 The And operation 
Things get interesting when we consider two sets and see how 

they interact. Consider the following: X = ‘things that are 

birds’, and Y = ‘things that can fly’. We can look at the 



Chapter 11 Logic and Language 3 
 

intersection of these sets X AND Y which means ‘things which 

are birds and which can fly’. A diagram will help 

 

 
 

You can clearly see the intersection of the two sets with the 

AND operation represented as the dot in X . Y (Boole didn’t 

use dots). There are other regions in the diagram apart from 

the intersection, let’s take a quick peek at these. 

 

 
 

To the left of the intersection we have Things which are 

birds which cannot fly (they lie outside the circle Y) and 

penguins are an example. To the right of the intersection we 

have region in Y but outside X. These are things that can fly 

but which are not birds, such as aeroplanes and drones. 

11.2.2 The Or operation 
Boole introduced the symbol + in discussing the union of 

two sets. Consider the sets: X = things that are men and Y 

= things that are women. Then the union is 

X + Y = things that are men OR women = adults. Here’s 

a diagram to illustrate this. 



Nature of Computing      4 
 

 

 
 

 

11.2.3 A Fundamental Result 
Boole goes on to do something a little unusual, but he 

recognizes the great importance of what he finds; this is the 

birth of the Binary system on which our machines are built. 

He considers the intersection of a set with itself like this 

 

 
 

He concludes that the intersection can only be “things that 

are birds” (there’s nothing else around) so he writes 

   X . X = X 

Remember this is a logical expression expressed as the 

intersection of two sets  and the dot symbol represents logical 

AND. It’s at this point Boole sees a magical connection. He 

looks at the above expression and sees it as a mathematical 

expression where the dot represents multiplication. So the 

above expression is tantamount to asking the question “what 

number multiplied by itself gives itself’. Boole deduces there 

are only two numbers that work 0 and 1 so he’s discovered 

Binary numbers! Wow! 

The nature of this connection between logic and mathematics 

is worthy of thought and we shall develop this later. For the 

moment let’s summarise it in a little diagram. 



Chapter 11 Logic and Language 5 
 

 

 
 

 

Now that Boole has discovered the Binary numbers 1 and 0 

in the realm of mathematics, he jumps back to the realm of 

logic and sets, and asks the question ‘What do the symbols 0 

and 1 mean in terms of sets, He soon reaches the conclusion 

 

1 represents Everything 

0 represents Nothing 

 

This makes sense, since if X = ‘things that are birds’ then        

1 – X means ‘Everything minus things that are birds’, or 

‘things that are not birds. So Boole establishes the NOT 

operation as 1 – X which we shall write as ~X. 

11.2.4 Truth Tables 
We can use Boole’s reasoning to understand those truth tables 

that may have been presented to us without explanation. 

Consider the truth table for logical AND shown below with 

the AND gate. On the right we have the truth 

 
 

table which we know. In the middle is the table constructed 

using Boole’s interpretation of 1 as Everything and 0 as 

Nothing. So in the first row we have Nothing intersecting 



Nature of Computing      6 
 

with Nothing which of course gives Nothing. And the last 

row has Everything intersecting with Everything which of 

course gives Everything. Now, rows 2 and 3 are interesting 

since we have Everything overlapping with Nothing and this 

gives Nothing, which suggests that Nothing obliterates 

Everything. Boole returns to the realm of mathematics to 

offer some support for this, he notes that 0 . 1 = 0 (where the 

dot is now being interpreted as multiplication) and it is clear 

that if you multiply any number by 0 you will get 02. 

A similar justification for the OR gate can be made as in this 

diagram 

 

 
 

Here when the union of Nothing and Everything is taken (the 

OR operation) then clearly Everything results. Finally we 

have the NOT gate 

 

 
 

Here we are using Boole’s interpretation of 1 – A meaning 

‘things that are not A’. 

  

 
2 While you might agree with Boole, I feel he has made a conceptual 

error here, since mathematical addition does not correspond to logical 

OR for the or gate where 1 + 1 certainly does not equal 1. 



Chapter 11 Logic and Language 7 
 

11.3 From Logic to Language 
Now that we understand how Logic emerged from language 

and sets, and how three important gates work, we can move 

onto using Logic to solve language problems. But first there 

is one more step we must take. 

Consider the language of computer programming where we 

use the logical AND (e.g.,  count && time) the logical OR 

(e.g. count || time) and the logical NOT (e.g. !count). Well 

there is one more logical construct we use 

 

if (condition) { 

 

} else { 

 

} 

 

This presents us with an interesting question. Is it possible to 

create an IF-gate? The answer is Yes! To see this, we have to 

revisit Boole’s fundamental result. 

Let us rewrite this result as follows 

 

X . X = X 
X.X – X.X = X – X.X (taking X.X from both sides) 

0 = X – X.X     (simplifying the left) 

0 = X.(1 – X)   (factoring out) 

 

and look in detail at the meaning of the last line 

 

 
 



Nature of Computing      8 
 

So the 0 on the left means ‘there is nothing’, the = sign means 

‘that is’ , X means ‘in X’ and 1-X means ‘not in X’. So in 

simple English this is telling us ‘There is nothing that is in X 

and is not in X’ which makes sense and you may think 

actually is obvious. You can’t be a man and not a man. You 

can’t be a student and not a student (though some students 

seem to try to defy this logic). 

Now we shall make a jump and replace the X  on the right 

with a Y so we are looking at 0 = X . (1 – Y) and here’s the 

interpretation 

 

 
 

So the meaning is: 

There’s nothing in X that is not in Y.    

i.e., IF something is in X then it is in Y. 

 

 

The set diagram clearly shows this fact. The set of X is 

completely contained in the set Y. To take this further, lets 

unwrap the above expression 

0 = X . (1 – Y) 
0 = X – XY 
X = X . Y 
 

We can use this to create our IF gate. Simply we have, ‘If X 

then Y’  is the same as the logical relation ‘X = X.Y’. So now 

let’s create the truth table for this and see how to implement 

it using standard logic gates. See below. 

 



Chapter 11 Logic and Language 9 
 

 

 
 

Starting at top left we introduce the expression. Then we 

create a truth table with the 4 values for X and Y. Then in the 

third column we calculate X.Y and in the fourth column we 

write a 1 when the third column is the same as the first, i.e., 

when X = X.Y. These values are highlighted. 

Now we move to the right and get creative. Here we 

reproduce the fourth column of the first table using standard 

logic expressions. The result is that ~X + Y gives the identical 

fourth column. Therefore we have found the logic for our IF 

gate. 

 

if X then Y is realized by the logical expression ~X + Y 

or in simple English ‘not X or Y’ 

 

Let’s take another peek at our prototype IF gate from the 

point of view of language, in particular the statement: 

 

If Fred is at home then he is asleep 
 

We can divide this sentence into its two ‘atomic’ clauses: 

 

X = Fred is at home 
Y = Fred is asleep 
 



Nature of Computing      10 
 

 

So here comes the truth table where we have inserted the 

sentence values in the X-Y columns instead of (0,0), (0,1), 

(1,0) and (1,1) to make it clearer. 

 

 
 

The bottom two lines are straightforward. The line Fred is 

home, Fred is asleep is clearly true and follows from the 

starting sentence. The line Fred is home, Fred is not asleep is 

clearly false. So these unambiguous lines are highlighted. 

The first and second lines are a little problematical, so I’ve 

put question marks here. The issue is that they refer to Fred 

not being at home, and the starting sentence contains no 

information about this. So we must make a choice, and we 

argue that in the case that Fred is not at home, then he may be 

asleep or he may be awake. So we agree that both of these 

cases must be true. 

11.4 Sum-of-Products Circuits 
Now let’s turn to some actual problems encountered in class. 

The first set of problems follows the electronic engineering 

‘sum of products’ solution strategy. For each problem we 

have several inputs, a single output and in the middle is a 

collection of logical gates which we call the ‘decision logic’. 



Chapter 11 Logic and Language 11 
 

 
 

Let’s look at this problem where we have two switches A and 

B as inputs and an output light L. The problem statement is: 

 

The light comes on in either of two cases: 
When A is pressed and B is pressed 
or 
When A is not pressed and B is pressed 
 

(a) Complete the truth table. We only need to write the 1s. 

A B  

0 0  

0 1 1 

1 0  

1 1 1 
 

(b) Add mini-terms to the truth table. 

A B  mini-terms 

0 0   

0 1 1 ~A . B 

1 0   

1 1 1 A . B 
 

You create the mini-terms by looking at the values of A and 

B for that row, and writing an expression that is true. So for 

the second row A = 0 and B = 1 so the expression ~A.B is just 

1.1 which evaluates to true. In the last row both A and B are 

true so A.B evaluates to true. 



Nature of Computing      12 
 

(c) Now we deduce a logical expression for L the state of the 

light. The truth table shows that the light is on for rows 2 and 

4, so we or the mini-terms for these two rows 

  L = ~A . B  +  A . B 

You can see this captures correctly the initial problem 

statement. 

(d) Next we build a digital simulated circuit using this 

expression (but you could keep an eye on the truth table too) 

 
 

This way of laying things out conforms to standard electronic 

engineering practice. First we draw vertical wires for A and 

B, then we invert these and draw vertical wires for ~A and 

~B. Then we use AND gates to form the two mini-terms, then 

we use an OR gate to combine the mini-terms to produce the 

output L. All sum-of-products problems will look like this, 

invertors on the left, ANDs in the middle, and a single OR at 

the right. This circuit can then be simulated and the output 

verified against the truth table. 

It’s interesting to look at the expression for L. Using the rules 

of Boolean algebra, we can attempt to simplify this 

expression. Here’s the steps in the simplification: 

 

 



Chapter 11 Logic and Language 13 
 

L = ~A . B  +  A . B 
   = (~A  + A) . B 
   = 1.B 
   = B 

 

We have greatly simplified the solution. Check it is correct 

by inspecting the truth table; you will see the light is on when 

switch B is pressed. 

In terms of language, we have greatly reduced the problem 

from the initial statement of : 

 

The light comes on in either of two cases: 
When A is pressed and B is pressed 
or 
When A is not pressed and B is pressed 
 

 

to the much simpler one 

The light is on when B is pressed 
 

This language simplification is very important, why? Well if 

we are electronic engineers designing safety-critical circuits 

for the automotive or aerospace industries, then we need to 

describe simply and unambiguously the behaviour of our 

circuits, not only for engineers, but for salespersons and 

managers. The same is true for software engineers where we 

must be able to explain in language the logic behind our 

computer code. 

11.5 Consistency Checks for Language 
Now we shall turn to a deeper look at logic in language, and 

in particular look for consistency in a set of sentences. That 

means, is there any ‘solution’ to a set of sentences which is 

correct. This is not as clean as the sum-of-products but is a 

worthwhile study. 



Nature of Computing      14 
 

Consider the following set of sentences: 

(1) Smiley is an English spy. 
(2) Smiley is not both a Russian spy and an English spy. 
(3) If Smiley is a Cad then he is a Russian spy. 

 

(a) The first step is to extract the ‘atomic clauses’ from this 

set. This gives us: 

A = Smiley is an English spy 
B = Smiley is a Russian spy 
C = Smiley is a Cad 

 

Note we have not used any ‘negations’ in these. 

(b) Now we use these to create Boolean expressions (mini-

terms) for the set of sentences: 

(1)     A 
(2)     ~( A . B) 
(3)     ~C  +  B 

 

For (2) ‘both a Russian spy and an English spy’ would have 

been A . B so we’ve just negated that. For (3) we have used 

the IF gate. 

Now we can use these expressions to build up a truth table 

and look for any possible mini-terms expressing truth. 

A B C A ~(A.B) ~C + B 1s mini 

0 0 0 0 1 1   

0 0 1 0 1 0   

0 1 0 0 1 1   

0 1 1 0 1 1   

1 0 0 1 1 1 1 A. ~B . ~C 

1 0 1 1 1 0   

1 1 0 1 0 1   
1 1 1 1 0 1   

 



Chapter 11 Logic and Language 15 
 

So let’s see what we have. The columns labelled green 

correspond to our mini-terms (1), (2) and (3). The binary 

values filled in here come from the values for A, B, C on each 

row. In the column labelled 1s we have put a 1 when all three 

mini-terms evaluate to true. This represents any consistent 

solution. Here we have a single consistent solution A . ~B . 

~C which in simple English is: 

Smiley is an English spy, not a Russian spy and not a Cad 

 

11.6 Validation of Arguments 
Let us return to the argument presented in the chapter 

introduction. 

(1) If there is a fault, then it will explode. 
(2) There is no fault. 
(3) Therefore it will not explode. 

 

To validate this argument, we proceed in a similar way to 

consistency checking. Except we use a trick. We negate the 

conclusion and do a consistency check on the new set of 

sentences. The idea is, if we find a consistent solution then 

this provides us with a counter-example where the original 

proof is invalid. 

(a) First get the atomic sentences: 

A = There is a fault 
B = It will explode 

 

(b) Now create mini-terms for the original set of sentences 

negating the conclusion. 

(1) ~A  +  B 
(2) ~A 
(3) B 

 

 



Nature of Computing      16 
 

(c) Now build up the truth table. 

A B ~A  + B ~A B 1s mini 

0 0 1 1    

0 1 1 1 1 1 ~A . B  

1 0 0     

1 1 1  1   
 

So we have found one consistent solution. Therefore the 

original argument is invalid and the mini-term provides the 

counter example which is ‘There is no fault but it will blow 

up’. This makes sense since it could blow up for another 

reason other than a fault, for example a bomb would blow up 

without a fault, since this is what it is designed to do. 

11.7 Simplification of Boolean expressions 

11.7.1 Logic Identities 
There exist a number of logical identities, that is expressions 

where both sides of the = sign are identical. Here’s a list 

The first thing to note is that there are two columns, the left 

is based on the or + conjunction and the right is based on the 

and . conjunction. These are called duals and we’ll return to 

discuss this concept later. So what use are these identities? 

~ (~X) = X Involution  

X  +  0  =  X 

Identity 

X . 1  =  X 

X  +  1  =  1 X . 0  =  0 

X  +  X  =  X Idempotent X . X  =  X 

X  +  ~X  = 1 Complement X . ~X  =  0 

 

X  +  Y  =  Y  +  X Commutativity X . Y  =  Y . X 

X  +  (Y  +  Z)  =  (X  +  Y) + Z Associativity X . (Y . Z)  = (X . Y) . Z 

X  .  (Y  +  Z)  = X . Y  +  X . Z Distributivity X  +  Y.Z  = (X  +  Y) . (X  +  Z) 

(X  +  Y) . (W  +  Z)  =  X . W  + X . Z  + Y . W  + Y . Z Distributivity  

X  +  X . Y  =  X Absorption X . (X  +  Y)  =  X 

~(X  +  Y)  =  ~X  . ~Y De Morgan ~(X . Y)  =  ~X  +  ~Y 
 



Chapter 11 Logic and Language 17 
 

Well, they enable us  to simplify a Boolean expression and 

therefore express it in simpler language. So if we find 

something like A  +  ~A then we use the complement identity 

to simplify this to 1. This makes sense since the sentence ‘the 

switch is on or it is off’ is always true. Some expressions are 

hard to ‘see’ but we can establish their truth by constructing 

a truth table for each side of the identity and showing that 

they are identical. For this example we have 

 

A ~A A  +  ~A 

0 1 1 

1 0 1 
 

 

 

 

  = 

 

1 

1 

1 
 

11.7.2 The Absorption Identity 
This is a rather special critter and deserves some 

investigation. First let’s establish its truth by creating the truth 

tables for both sides, which clearly works 

 

X Y X.Y X + X.Y 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 
 

 

 

  

= 

 

X 

0 

0 

1 

1 
 

The question is why does this work? The answer lies in the 

column X.Y. The only case this is true is when both X and Y 

are true, and moreover when X is true (last row), so when we 

or this with X in this row, X is already 1 so nothing changes. 

Now let’s see how to apply this rule. Often you may come 

across an expression like this where you cannot apply the 

distributive rule 

 

L = A  +  ~A.B 
 



Nature of Computing      18 
 

 

Here’s how we proceed: From the original expression we can 

add an extra term. Since X  +  X.Y  = X, this extra term must 

start with A in this example, and we have free choice for Y. 

L = A  +  A.?  +  ~A.B 
 

How to choose ? ? Well, it can be A, ~A, B, ~B. To decide 

which, we look at the last term on the right and see how to 

craft the extra term so it can combine with this and hopefully 

simplify things. Here we choose ? = B and then we can apply 

the distributive rule as the next step. Here’s the complete 

simplification: 

L = A  +  A.B  +  ~A.B 

    = A  + B.(A  +  ~A) 

    = A  +  B.1 

    = A  + B 

 

11.7.3 De Morgan’s Laws 
These can be verified as usual by constructing truth tables 

for both sides of the expression which shows they are 

identical. Let’s take ~X + ~Y = ~(X.Y) 

 

X Y ~X + ~Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
 

 

 

  

= 

 

X.Y ~(X.Y) 

0 1 

0 1 

0 1 

1 0 
 

 

So if X = ‘The door is closed’ and Y = ‘The window is closed’ 

then ~X + ~Y means ‘Either the door is open or the window 



Chapter 11 Logic and Language 19 
 

is open’, while ~(X.Y) means ‘The door and the window are 

not both closed’. You may choose which you find simpler. 

In the language of programming, we may need to do a 

compound test, e.g., to see if a user has entered both their ID 

and their password PW and throw an exception if this is not 

true. We may write this 

if( !(userID && userPW) ) throw exception 
 

which reads ‘If both the userID and userPW have not been 

entered, then throw an exception’ which we could using De 

Morgan write like this 

 

if( ~userID || ~userPW ) throw exception 
 

which means ‘If either the userID or userPW has not been 

entered, then throw an exception’. Perhaps you find one way 

easier to understand. 

 

11.7.4 The Ubiquitous AND gate 
Here we shall prove using De Morgan that all gates can be 

made from NAND gates. 

First, we establish the NOT gate. Consider this circuit where 

both inputs of the NAND gate are tied together so they get 

the same input A. 

 

 
 

 

Now using De Morgan we find 

~ ( A.B ) = ~A  +  ~B 

~ ( A.A ) = ~A  +  ~A 

~ ( A.A ) = ~A 



Nature of Computing      20 
 

 

so that the above circuit behaves like a NOT gate. Now onto 

the AND gate. This is straightforward since an AND is just 

a NAND followed by a NOT so here’s an AND gate made 

from NANDs. 

 
 

Now let’s turn to the OR gate; this needs a little more work. 

Starting with De Morgan 

~( A  +  B ) = ~A . ~B 

 

we negate both sides, so we get the OR gate 

~ (  ~( A  +  B)  ) = ~ (  ~A . ~B  ) 

i.e.,     A  +  B  = ~ (  ~A . ~B  ) 

 

Now before we move on, look at the meaning of the term on 

the right. This is of the form ~(X.Y) which is ‘not (X and Y)’ 

which is of course a NAND gate. So the term on the right is 

just a NAND gate fed with ~A and ~B as its inputs. And we 

can create these two NOTs from NANDs. Wow! So, here’s 

the circuit for an OR gate which is equivalent to three NAND 

gates. 

 
 

 


