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Chapter 10 
Parallel Computing 

10.1 A brief Introduction 
We are all very familiar with our own PCs, our desktops or 

laptops, especially the gaming ones with glowing keyboards. 

Perhaps ‘familiar’ is not quite the right word; surely, we all 

have ‘personal relationships’ with our machines, because we 

live with them every day. Our own machine is like a spouse, 

we are effectively married until hardware or software 

improvement and demands makes us divorce!  

What triggers such an event? A significant economic cycle 

where sales of computing devices depend on increase of 

computing power (operations per second) and increased 

power enables more complex applications to run. Such 

applications and the computing power both sit together on a 

knife edge; the applications use the full power and demand 

even more. So, computers become more powerful, and the 

applications become more complex. The knife edge has not 

disappeared, it has only sharpened. 

As developers (and not chip designers) there are a couple of 

ways we can write our applications to increase their 

performance. First on a multi-core machine we can write our 

programs, so they run on all cores simultaneously, this is 

multi-processing. We are thinking of a single box here where 

the cores share memory, and this requires a particular style of 

parallel programming. We shall not discuss distributed 

parallel processing where each core has its own memory, 

think about running an application on all PCs in our lab in 

parallel. 

The second approach we can take is to parallelize our 

application on a single-core machine, such as a robot 

microcontroller, this is multi-tasking. This approach to 

parallel programming provides a strong way of structuring 
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our code most efficiently, cleanly and encourages a more OO 

structure with resulting code reusability. The two approaches 

we shall unravel in this chapter are shown in Figure 10.1. 

Our study of multitasking will take place using our single 

core Arduino where we shall look at a couple of features of a 

Real Time Operating System (RTOS) which allows us to run 

several tasks in parallel and in real time. Application of a 

RTOS abound in systems driven by microcontrollers, 

especially those with sensor inputs and actuator outputs. The 

RTOS allows us to organize our code into coherent units 

(called threads). We can then partition our code into threads, 

one will handle inputs, another will handle outputs. So this 

sounds like object-oriented programming in the C-language 

which is flat not OO. Clearly threads need to communicate 

with each other, and some may need to respond more quickly 

than others; the thread reading a sensor value must not miss a 

reading, so this thread should run at a higher priority. All this 

(and more) is achieved by using a RTOS. Perhaps the closest 

you have seen to an RTOS is a Finite State Machine, though 

there are some conceptual differences. 

Multiprocessing is a different beast. This is all about how to 

run a single program or a single function on multiple 

hardware cores. It is not about running a separate program on 

each core. This involves working with existing code and 

looking for sections where computations can be done in 

parallel. Consider the following operation on some arrays. 

for (int i=0; i<10; i++){ 

   c[i] = a[i] + b[i]; 

} 

It is straightforward to understand how this code can be 

spread over multiple cores. Say we have 10 cores, then core 

1 could compute c[1] = a[1] + b[1]; and core 2 could 

compute  c[2] = a[2] + b[2]; and so on. All computations 

would occur at the same time in parallel. So, we have 

effectively unrolled the loop and spread it over the cores. 

Nice eh? 

Figure 10.1 Distinction between multitasking 

and multiprocessing. 
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10.2 Real Time Operating Systems 

10.2.1 A Brief Introduction 
To understand how a RTOS works on a microcontroller (our 

Arduino) we need to refresh our understanding of typical 

microcontroller hardware. Figure 10.2 presents a very 

simplified description; you can look up the ATmega328 

datasheet from Atmel if you like. You recognize the CPU and 

RAM, also there is I/O electronics, and a timer that can be 

programmed to emit output pulses. The crucial part for the 

RTOS is the part of the CPU that handles interrupts. These 

come from input signals (an input pin may change state from 

HIGH to LOW) and this change is used to rapidly change 

which part of the user’s program is executed. Here’s some 

Arduino code. In setup() pin 2 is attached to the Interrupts 

system and is associated with the interrupt service routine 

(ISR) here named ISR1 That routine is coded at the end. 

Within loop() there is a call to another function which makes 

the LEDs blink. 

void setup(){ 

    

attachInterrupt(digitalPinToInterrupt(2),ISR1, 

CHANGE); 

} 

 

void loop(){ 

  blink_LEDs(); 

} 

 
void ISR1() { 

   bRunning = false; 

} 

 

So, let’s say you have a push button connected to pin 2. If you 

leave it alone, the code in loop() will merrily churn around. 

Then you press the button and change the voltage on pin 2. 

The CPU Interrupts unit recognizes this and immediately 

jumps out of the executing loop() code and vectors to the ISR 

and executes code there. Then it returns to the loop() code at 

the point it left off. This happens extremely quickly, on an 

Figure 10.2 Greatly simplified microcontroller 

system. 
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ATMega328 it takes 4 CPU clock cycles, running at 16MHz 

this equates to a quarter of a microsecond! It’s also important 

to note that this code interruption occurs at the level of 

machine instructions. That, as we shall see has some 

interesting consequences. 

Now, an interesting feature of microcontrollers is that their 

Timers can be used to change the state of an I/O pin. So, if 

that pin has an interrupt attached, then the timer can raise a 

periodic interrupt. So, we can write code which will regularly 

interrupt itself and go off and do something else. This is just 

what is needed for a RTOS to be able to switch processing 

from one task to another. Such code forms part of the RTOS 

kernel (core code) and is used to run the RTOS Scheduler. 

Figure 3 shows the idea where the red bars show the 

interrupts generated by the scheduler; when an interrupt 

occurs, the CPU is vectored to code from either task A or task 

B in turn. Here I have shown regular slices of time. 

10.2.2 A simple two-task program 
Now let’s start to add some more detail. Consider the 

following code comprising 2 tasks. I’ve omitted task setup 

code. There are two LEDs attached to the microcontroller; it’s 

easy to see what the code will do. Since Task1 runs for a slice, 

then Task 2 runs for a slice, then if the time slices are short 

enough we shall perceive that both tasks run in parallel; 

LED1 blinks with a period of 1 second and LED2 with a 

period of 2 seconds. 

 

void Task1() { 

   while(1) { 

      turnLED1(on); 

      delay(500); 

      turnLED1(off); 

      delay(500); 

   } 

} 

 

void Task2() { 

   while(1) { 

      turnLED2(on); 

      delay(1000); 

      turnLED2(off); 

      delay(1000); 

   } 

} 

 

 

The timing in Figure 3 agrees with this example 

Figure 10.3 Interrupts selecting Task A then 

Task B to run. 
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10.2.3 The Scheduler 
It’s clear that a task can exist in one of two states running or 

not-running. When a task is running, we say that the 

scheduler has ‘swapped it in’ and when it is not running, the 

scheduler has ‘swapped it out’. There is actually a finer 

distinction; when a task is not running, it exists in one of two 

substates, ready or blocked. A ready task is ready to be 

swapped in at the next time slice, on the other hand a blocked 

task is not ready and will not be swapped in. It may be waiting 

for some input. In this case, the task just swapped out will be 

immediately swapped in again (providing it is ready!). The 

task states are shown in Figure 10.4. 

Tasks are put into a blocked state using some RTOS API call. 

for example, a request for a time delay, or waiting for some 

data to arrive from another task. They can transit to a ready 

state when some event occurs, like the time delay has expired 

or data arrives, or there is an external interrupt from a button 

push.  

We can now introduce a more complete timing diagram for 

the code example presented above. 

 

Time is shown running left to right. The green bars show the 

CPU clock or ‘sysTick’ and the red bars show the time slices. 

Horizontal green bars show when the task is running and 

yellow bars when it is ready. There are no blocked times for 

either thread. On the left you can see that both tasks have been 

Figure 10.4 States of a Task 
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set to have the same priority. There is also an Idle Thread 

which we’ll come onto shortly. Since both threads have the 

same priority, it is guaranteed that the scheduler will select 

each thread to run in turn (unless one blocks); this is called 

the Round Robin scheduling algorithm. 

Now let’s see what happens when the priority of task B is 

raised. 

 

Here both tasks are ready, but the scheduler is guaranteed to 

swap in the task with higher priority, if both tasks are ready. 

While this all sounds reasonable, both situations shown in the 

timing diagrams above are quite horrible, and should never 

happen. You can see why; at all times the CPU is running a 

task, it is totally consumed and has no time for anything else. 

Also both tasks need to have the same priority to be able to 

be swapped in. The cause of the problem was the calls to the 

delay() function in the code, which simply burned up CPU 

cycles in some dastardly horrible loop, very bad. 

This is where the blocked state comes into play. FreeRTOS 

has an API call vTaskDelay() which puts the task into the 

blocked state for a certain number of ticks, so effectively 

providing the delay. Here’s how you would use it 

   while(1) { 

      turnLED1(on); 

      vTaskDelay(1000/portTICK_PERIOD_MS); 

      turnLED1(off); 

      vTaskDelay(1000/portTICK_PERIOD_MS); 

   } 

 



Chapter 10 Parallel Computing 7 
 

and here’s what the timing diagram will look like. Orange 

represents blocked. 

 

So, what is happening here ? Task B has the higher priority 

and is ready, so the scheduler swaps this in. It runs and then 

calls the vTaskDelay()API function which puts itself 

(taskB) into the blocked state. The scheduler sees this and 

also that the lower priority task A is ready so it swaps it in. 

Task A then runs until it hits its vTaskDelay() function at 

which point it too blocks and is swapped out. 

At this point neither tasks A or B are ready, so the scheduler 

chooses the Idle Task which you can see runs merrily along. 

The idle task of lowest priority is created when the scheduler 

starts up and it is put into the ready state, so it has something 

to run. 

After a while, Task B’s delay ends, and it becomes ready so 

is swapped in at s4. It runs a bit more and at t3 calls its  again 

and re-enters the blocked state. Fortunately, Task A is ready 

so it can run again. 

One more thing; the scheduler is not restricted to do swaps to 

the time slices s1, s2, … but can also act at sysTick intervals 

t1, t2, … 

10.2.4 More Scheduling Algorithms 
This section is moving into advanced territory but is 

important since we discuss how the majority of 

microcontroller RTOSs actually are configured. This uses the 
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Fixed Priority Pre-emptive Scheduling with Time Slicing. In 

other words, forget Round Robin. What does this mean? 

Well, ‘Fixed Priority’ means that the scheduler cannot change 

the priority of tasks (although tasks may change their priority 

and that of other tasks). ‘Pre-emptive’ means that if a low 

priority task is running and a higher priority task becomes 

ready, then the lower priority task will be swapped out (even 

though it does not want to). We know what time slicing is, if 

two tasks have equal priority then they are swapped at regular 

time-slice intervals. 

You can imagine, the combination of time-slicing and pre-

emption is quite powerful. Let’s look at a hypothetical set of 

three tasks to see this in action. 

 

Task B and the Idle task both run at low priority and task A 

is event-driven and spends most of its time in the blocked 

state until its event arrives at t1. You can see that the 

scheduler time-slices task B and the idle task (same priorities) 

for quite a few slices. But in the middle of slice s4-s5 where 

idle starts running, task A becomes unblocked, hence ready, 

and pre-empts the idle task. Task A runs from t1 to t2 to 

complete its business, then the scheduler chooses to swap the 

idle task in according to the Round Robin policy. 

10.2.5 Possible Issues with Swapping. 
There are a couple of potential issues in a multitasking 

system. The first concerns shared resources such as writing 
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to the serial port. Let’s say task A wants to print out the string 

“Hello Cat” and task B wants to print out the string “rapture”. 

Task A starts executing and manages to print “Hello C” then 

it is swapped out and task B prints “rapture”. Then task A is 

swapped in and completes its output “at”. So, what you 

actually get is “Hello Craptureat”. Clearly, we have to protect 

the printing from a context switch. 

Another problem is when ‘read, modify, write’ operations are 

encountered. For example, the following C-code reads the 

value  of  the variable max stored in memory, then ORs the 

value with 0x01, then writes the value back to the memory. 

The assembler code is also shown 

max = max | fred; 

 

LOAD R1, [#max] 

LOAD R2, [#fred] 

OR R1, R2 

STORE R1, [#max] 

 

The problem comes from the fact that a single line of C-code 

produces 4 lines of assembler (therefore machine code) and 

it is this code that is interrupted by the scheduler. Consider 

the case where task A and task B attempt to modify the same 

variable max. 

• Task A loads the value of max into R1 

• It is then pre-empted by task B. The scheduler saves 

all of taskA register values including R1 which 

contains the value of max 

• Task B runs all 4 lines of machine code (read, modify, 

write) and updates maax then blocks. 

• Task A is swapped in and its registers restored 

including R1 which contains the old value of max 

• Task A runs to completion and update the value of 

max then writes it back. 

The trouble is task A has used an out of date value for max 

and it overwrites the value calculated by task B. 
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To prevent these issues, we must protect critical sections of 

code from being accessed by more than one task. The crudest 

is to use the critical section construct. In the example below 

a print statement is wrapped in a couple of macros. These 

compile into code which disable interrupts and therefore 

suspends the scheduler. 

taskENTER_CRITICAL(); 

   Serial.println(“Hello Cat”); 

taskEXIT_CRITICAL(); 

 

Turning off interrupts is never a good thing it renders the 

microcontroller blind to its inputs, and so it may miss a 

critical event, such as a warning of an impending collision. 

A better way is to use a semaphore called a Mutex (from 

mutual exclusion). Think of a mutex as a single token which 

only one task can possess at any time, shown in Figure 10.5 

as a yellow ball. Initially no task has the mutex, then task A 

tries to take it and it succeeds. It then calls its print() function. 

Shortly after, as task A is in the middle of its printing, task B 

wants to print, so it tries to take the mutex. But it can’t (since 

task A has it) so task B enters the blocked state. When task A 

has completed printing, it returns the mutex, then it is given 

to task B which unblocks and does its printing. 

10.2.6 A few loose threads 
Reading around the subject, you might come across different 

terminology, some texts refer to ‘threads’ where we have 

referred to ‘tasks’. Another name for ‘swapping in and out’ is 

‘context switching’. We have only hinted at what actually 

happens during a context switch. Remember this occurs at 

machine instruction level, so the exact state of the machine 

needs to be saved (the contents of its registers, any local 

variables and the instruction pointer) before it’s swapped out. 

Only then can the task be later restored. This saving is done 

using a stack located in each thread. 

  

Figure 10.4 Yellow Mutex gives Task A 

exclusive access to the printer since Task B 

gets itself blocked. 
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10.3. Multiprocessing with OpenMP 

10.3.1 A Brief Introduction 
While there are many supercomputer architectures, two 

significant ‘poles’ of design stand out. First is the ‘shared 

memory’ architecture. Here the fundamental design principle 

is to share memory between each processor. While each 

processor has its own local cache (system) there is shared 

memory available to all processors Fig.10.6 (top) and that’s 

where they collaborate. For example, if several processors 

update individual elements of a vector in parallel, then that 

vector will be in shared memory. OpenMP supports a shared 

memory architecture and provides the ability to set up teams 

of processing threads (operating on different processors) and 

share the work between them. OpenMP is not a language, as 

we shall see it comprises a number of compiler ‘directives’ 

which the programmer uses to identify regions of code they 

wish to parallelize. 

The other end of the pole is ‘distributed memory’ such as in 

a networked or ‘cluster’ processing configuration, Fig.6 

(bottom). Here, a different programming model is needed, 

which is referred to as ‘message passing’. Since memory is 

not shared, each nodes needs to message other nodes to 

coordinate processing of variables. The industry standard is 

‘MPI’ which is often used by the hi-tech community where 

clusters of machines (serious boxes the size of a sub-post 

office) are common. 

MPI programming can be tricky and normally requires re-

programming of existing code to parallelize it, and certainly 

does not support an incremental port from sequential to 

parallel code. It is here that OpenMP shines, since (as 

mentioned) it consists of a set of ‘directives’ which the 

developer can add into existing code, to tell the compiler what 

sections should be parallelized. Visual Studio has OpenMP 

built in for C, C++ and Fortran, not for C#. So, you can write 

parallel programs, today! 

Figure 10.5 Shared memory (top) and distributed 

memory (bottom) multiprocessing architectures 
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10.3.2 The OpenMP Model 
The OpenMP API consists of a number of ‘directives’ that 

tell the compiler when and how to parallelize code; we shall 

see some of these below. These directives take the form of 

#pragma statements, inserted into existing sequential code to 

parallelize it. In addition, OpenMP provides the programmer 

with (i) the means to create a ‘team’ of threads, (ii) structures 

to enable work sharing between the team members, (iii) 

specification whether variables are shared across all threads, 

or private to each thread, and of course (iv) a load of ways to 

synchronize all of this. OpenMP uses a ‘fork-join’ approach 

to execution which you may be familiar with if you were 

brought up on UNIX. This is shown in Fig.10.7 where the 

program execution flow starts from top and runs to bottom. 

Starting with one processing thread, there is a fork which 

creates a team of threads and does some useful work in 

parallel. When this is done, all threads agree to rendezvous at 

a point in time and to join after which one thread takes over 

the processing which becomes sequential again. For example, 

the initial sequential part could be to gather user input, the 

parallel part could be a multi-body simulation, and the final 

serial part could be the output of the body final positions. 

Let’s have a look at a couple of important OpenMP 

directives, and then give some examples along the way. 

10.3.3 The Parallel Construct 
To move from a single sequential thread and create a team of 

threads (fork) running in parallel we wrap the code we wish 

to parallelize, inside this construct. 

#pragma omp parallel 

{ 

 

    our existing code which we want to run in parallel 

 

} 

 

Figure 10.6 Fork-Join software architecture 
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At the end of this parallel region there is an implied barrier 

which forces all threads in the team to wait until they have 

completed their work. Then one thread will take on the 

remaining sequential programming. While this construct 

guarantees we have a team of threads, it does not specify how 

their work is to be shared. There are four work-sharing 

constructs, we shall encounter only a couple.  

10.3.4 The Loop Construct 
This is perhaps the most useful and important way to 

parallelize programs. Just think of how many loops you code 

on a daily basis. Here’s how you would parallelize your loop. 

Let’s say you have this in your existing code 

for(i=0; i < 4; i++) { 

   a[i] = b[i]*c[i]; 

} 

 

In your sequential code a single core would calculate the 

value of a[i] in turn. So, it would calculate a[0], then a[1], 

then a[2], then a[3]. That works fine. But we can do this 4 

times as fast if we use 4 cores, where one core calculates each 

a[i]. Here’s how we use the #pragma omp for construct. 

#pragma omp parallel 

{ 

   #pragma omp for 

   for(i=0; i < 4; i++) { 

      a[i] = b[i]*c[i]; 

   } 

} 

 

 

Here we first declare a parallel region #pragma omp 

parallel. Then we indicate that our for loop is to be 

parallelized using the #pragma omp for directive. 

So ,what does this do? Say we have 4 cores on our machine. 

The following happens in parallel 
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core 0 calculates a[0] 

core 1 calculates a[1] 

core 2 calculates a[2] 

core 3 calculates a[3] 

 

So, we have obtained a x4 speedup in our computations, and 

we have done this by ‘wrapping’ our existing code in a couple 

of OpenMP compiler directives. 

10.3.5 The Sections Construct 
This is perhaps a little easier to understand than parallelizing 

loops (but perhaps not as useful). The idea is that we may 

have sections of our code which are independent. Yep, think 

functions. Let’s say we have two functions in our code which 

we call sequentially like this 

main() { 

   func1(); 

   func2(); 

} 

 

 

If we have two threads (or more) then we can execute both 

functions in parallel effectively assigning the processing of 

each function to an independent thread. Here we make use of 

the sections construct, placing this in a parallel region 

#pragma omp parallel 

{ 

 

   #pragma omp sections 

   { 

      #pragma omp section 

      func1(); 

      #pragma omp section 

      func2(); 

   } 

} 
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So, one thread will execute funct1() at the same time as the 

second thread is executing funct2(). One potential problem 

called ‘load imbalance’ occurs which reduces the 

parallelization speed-up. If one function has more work to do 

than the other, then the second thread will be hanging around 

waiting for the first, effectively doing nothing. Also, if you 

had 5 functions and only 4 threads then one thread would do 

twice the amount of work and the other 3 would be twiddling 

their thumbs. 

10.3.6 The Barrier Construct 
A barrier is a point in the execution of code where all threads 

wait for each other; no thread is allowed to proceed until all 

threads have reached the barrier. While there is an explicit 

barrier construct #pragma omp barrier which can be 

inserted into code, other constructs provide an implied barrier 

which provides us with some very useful synchronization 

tools. Consider the code below which effectively contains 

two sections! In the first, the values of vector a[i] are 

initialized in parallel, then when all have been initialized, 

they are used in the second section in some computation. 

#pragma omp parallel 

{ 

     #pragma omp for 

     for(i=0;i<N;i++) 

          a[i] = i; 

 

     #pragma omp for 

     for(i=0;i<N;i++) 

          b[i] = 2*a[i]; 

 

} 

 

Here there is an implied barrier at the end of the first omp for 

so all the values of a[i] are initialized before they are used in 

the second omp for. 

One case where a barrier can be explicitly used is in our 

classic read-modify-write situation, which we could protect 

using a critical section or semaphore. If we inserted a barrier 
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between writes to and read from a shared variable, that would 

avoid a data-race condition. 

10.3.7 When OpenMP goes wrong or can’t ever work. 

Code which cannot be parallelized. 

Let’s compare the two loops shown below. The first can be 

parallelized but the second cannot. 

 

for(i=0;i<N;i++) 

     a[i] = a[i] + b[i]; 

 

 

for(i=0;i<N;i++) 

     a[i] = a[i+1] + b[i]; 

 

 

In the first loop, the iterations are independent, and so can be 

shared across a whole team of threads, each thread dealing 

with the i’th update. The second loop has a dependency; the 

value of a[i] depends on the next value in the array a[i]. Say 

one thread is updating a[i] and expects to find the value of 

a[i+1] at that time. It might find it, but it might not, because 

another thread may have already updated a[i+1]; We just 

can’t know. If we ran this code, it might work correctly but it 

might not; the behaviour is non-deterministic. This is another 

example of a data race condition, here introduced by an 

incorrect parallelization of a loop. 

Thread-Safe and non-Thread-Safe Functions 

We have stressed that one strength of OpenMP is that it 

allows us to use existing code. More than likely, our code 

uses a library containing functions which we have not written, 

and so have no idea what is in the library. In particular we 

may not know if the library makes use of global variables. 

This can lead to a problem. Here’s a toy example. The main 

function calls a single library function which updates a global 

variable. 

int nastyGlobal; 

 

void lib_func() { 

     nastyGlobal++; 
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     // some meaningful stuff 

} 

 

main() { 

     #pragma omp parallel  

     { 

          lib_func(); 

     } 

} 

 

Since we are calling the library function from a parallel 

region multiple threads may try to access nastyGlobal at the 

same time; we have a read-modify-write operation. Here the 

problem is easily solved putting the update into a critical 

region, 

void lib_func() { 

     #pragma omp critical 

     nastyGlobal++; 

     // some meaningful stuff 

} 

 

 

10.4 Applications of OpenMP 

10.4.1 Matrix – Vector Multiplication 
Matrix-vector multiplication is an important computation 

especially for computer graphics and even more so for games. 

Consider a 3D object comprising a number of vertices 

(corners) and edges. In a game, objects move, they are 

translated and rotated as shown in Fig. 10.7. Both translation 

and rotation are effected through a matrix-vector 

multiplication. The coordinates of one vertex are labelled 

relative to the graphics system origin in Fog.10.7. 

 We won’t explain the details of the maths here, but 

simply state that each of the new coordinate x’, y’, z’ is some 

linear combination of the old coordinates x, y, z. This can be 

expressed as a matrix-vector multiplication which transforms 

the old to new coordinates, the matrix-vector multiplication 

is shown in Fig. 10.8 

Figure 10,7 Transformation of a graphical object, a 

rotation and a translation 



Nature of Computing      18 
 

The transformed vector is the column on the right. The 

mechanics of calculating its components is straightforward, 

e.g., we have, 

𝑥′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 

and similar for the other elements. Note how I’ve labelled the 

elements of the matrix rows, as successive characters with 

jumps between the rows. This is intentional and we shall see 

why in a moment. Let’s see how to code this. We need to 

iterate over both rows and columns so we need a nested loop 

like this, where Input and Output vector are shown. 

 
 

 

The above code is ‘row-dominant’ since each complete row 

calculation is completed in turn. But we could iterate over the 

columns in the outer loop like this. 

 

 
 

Both of these nested loops have exactly the same number of 

operations, so we should expect them to have equal 

performance. But we find on investigation that the row-

dominant computation is more much efficient especially for 

large matrices (e.g. 1000 rows and 1000 columns). Let’s see 

why. 

 

Figure 10. 8 Matrix vector multiplication 
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It turns out there are two factors we need to understand, the 

first concerns hardware, specifically how memory is 

organized, and the second concerns software, specifically 

how the C-compiler organizes data in memory. Fig. 10.9 

shows the hardware situation. 

 The data is loaded onto motherboard memory (RAM) 

and the CPU loads the part of data required for a given 

computation into its cache. RAM is cheap but slow, Cache is 

extremely fast but limited in size. For a given computation 

the cache may not be large enough to hold all the data 

required for the computation, so data has to be loaded in 

chunk by chunk. This data transfer takes time and adds an 

overhead to the total computation time. This is especially 

relevant to matrix-vector calculations. 

 The C-compiler loads a matrix in row-dominant form 

which means that all elements of a given row are grouped 

sequentially. This is shown below; the left column is the 

RAM address, relative to some base address. The centre 

column shows which matrix element is stored at each address 

and the right column shows the data for the example matrix. 

Let’s take a (somewhat daft) toy problem. Assume that the 

cache only has 6 cells. So when the matrix is loaded into 

cache, only the first two rows will be in place. This is fine for 

a row-dominant loop where we start with row1 then access 

columns 1 to 3 since all the data is in the cache. But if we take 

Figure 10.9 Memory organization showing external 

Memory (RAM) and the Cache memory on the CPU 

chip. 
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a column-dominant loop, then for each column we need row1 

then row 2 then row 3. But row3 is not in the cache at this 

time, so we must go back to RAM and grab it from there 

which takes time. While this is a toy problem even a large 

cache may be overwhelmed by a huge matrix. So the 

takeaway is to use row-dominant coding (if you are using C 

or C++). 

 Now to parallelization. It’s easy to see how this is 

possible. Consider the slightly smaller matrix-vector 

calculation in Fig.10.10 where the whole computation is 

shown at the top. It is easy to understand that this may be split 

into two computations which are independent, to top row 

times the input vector, and the bottom row times the input 

vector. Since these computations are independent (do not 

need a result from the other one) they can be assigned to two 

cores and run in parallel. The OpenMP parallelization is 

shown below, where we make some of OpenMP’s ‘rules’ 

explicit. 

 
 

 

The ‘rules’ are all about data sharing between threads. First 

we write default(none) to turn off defaults so we have to state 

the data sharing rules explicitly. First, all threads need to 

access nrRows, nrCols, Input, Output and Matrix, so these 

variables must be shared by all threads. The iteration 

variables row, col need to be unique to each thread, therefore 

private. Think of the consequences if this were not the case. 

If row and col were shared then one thread could change the 

Figure 10.10 Decomposing matrix-vector 

multiplication into parallel processing of rows 
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iteration variable of the other producing unpredictable run-

time behaviour. If the variables identified as shared had been 

made private, they would be uninitialized (one of the rules of 

OpenMP) so nrRows and nrCols would be unknown. You get 

the idea, The same is true of the vectors and matrix. In 

addition, there is another OpenMP rule, that if a variable is 

private then it is not accessible outside of the parallel region, 

so in this case we could not access Output. 

 

10.4.2 The N-Body Problem 
Here we are looking at scenarios where many component 

objects move around, and their movement is described by 

forces of interaction. Think about gravitational attraction that 

makes the planets orbit, it also makes asteroids orbit around 

the Earth, and space-junk too. And gravitational attraction 

occurs between stars to, so we have a huge system of 

interacting objects where 𝑁 ≈ 1015. Solving such systems by 

computation is clearly quite challenging. 

 You may ask if there are any systems where we don’t 

need to compute but can get the exact solution of motion 

using maths. The answer is yes, but only for N=2. As soon as 

we have more than 2 bodies, then maths fails and we need to 

compute. 

 Other scenarios include modelling pedestrian footfall, 

the ‘Social Force Model’, the motion of electrons in circuits 

which may produce x-rays. These systems, all based on 

forces, share a common structure, and the computational 

solutions are all rather similar. Let’s take as an example the 

Social Force Model of pedestrian interaction. Here the idea is 

quite simple, as pedestrians move around in crowds, or walk 

down a high-street, they exert repulsive forces on each other, 

to avoid collisions and to obtain ‘social distancing’. 

 Details of the interactions are shown in Fig.10.11. The 

focus is on pedestrian i (yellow) and to calculate its 

movement we need to get the forces from all the surrounding 

pedestrians j. The force 𝐹𝑖𝑗 is the force on pedestrian i from 

Figure 10.11. Forces from pedestrians j (green) 

onto pedestrian i (yellow). 
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each pedestrian j. You can see this is repulsive and is aligned 

on the axis between pedestrian i and pedestrian j. Also you 

can see that the closer j is to i then the larger is the force from 

j to i. 

 How do we approach coding this? Well, we have 4 

pedestrians. So, we must calculate the force on each (outer 

loop) from the other 3 (inner loop). Of course, we must avoid 

calculating the force of a pedestrian on itself which would be 

infinite. We could split the computation into two sequential 

parts. First we compute the total force on each pedestrian by 

summing interaction forces between this and all other 

pedestrians. Second, we use this total force on each 

pedestrian to update its position. Here’s the pseudo-code. 

 

 

 

The two inner loops are iterating over pedestrians, so 

parallelizing these loops will map pedestrians onto cores; 

each core will deal with one specific pedestrian. Here’s a 

possible parallelization. 
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Now we need to look at the details to check if there are any 

data dependencies which could cause a race condition. 

The first loop will look like this. 

 

 
 

Each thread will execute code for a particular index j. Vector 

d is private to each thread, so is dist and force_mag and 

force_ij since these are different for each body.Of course 

index j is private. Different threads do simultaneously access 

the bodies array (go get pos and mass) but these variables are 

only read. So, it looks as though there is no race condition 

here. 

 The second loop has the form shown below. Here the 

shared variables are again the array bodies and we now have 

the time interval dT. These are read so again we do not have 

a race condition. 

 You may wish to combine the two loops into one 

which is fine and the same conclusions will apply so we 

conclude that this algorithm is parallelizable. 
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The final pragma we could use in this case would be, 

 

 
 

 

 

 

 

 


