
Chapter 10 Parallel Computing 1

Chapter 10
Parallel Computing

10.1 A brief Introduction
We are all very familiar with our own PCs, our desktops or

laptops, especially the gaming ones with glowing keyboards.

Perhaps ‘familiar’ is not quite the right word; surely, we all

have ‘personal relationships’ with our machines, because we

live with them every day. Our own machine is like a spouse,

we are effectively married until hardware or software

improvement and demands makes us divorce!

What triggers such an event? A significant economic cycle

where sales of computing devices depend on increase of

computing power (operations per second) and increased

power enables more complex applications to run. Such

applications and the computing power both sit together on a

knife edge; the applications use the full power and demand

even more. So, computers become more powerful, and the

applications become more complex. The knife edge has not

disappeared, it has only sharpened.

As developers (and not chip designers) there are a couple of

ways we can write our applications to increase their

performance. First on a multi-core machine we can write our

programs, so they run on all cores simultaneously, this is

multi-processing. We are thinking of a single box here where

the cores share memory, and this requires a particular style of

parallel programming. We shall not discuss distributed

parallel processing where each core has its own memory,

think about running an application on all PCs in our lab in

parallel.

The second approach we can take is to parallelize our

application on a single-core machine, such as a robot

microcontroller, this is multi-tasking. This approach to

parallel programming provides a strong way of structuring

Nature of Computing 2

our code most efficiently, cleanly and encourages a more OO

structure with resulting code reusability. The two approaches

we shall unravel in this chapter are shown in Figure 10.1.

Our study of multitasking will take place using our single

core Arduino where we shall look at a couple of features of a

Real Time Operating System (RTOS) which allows us to run

several tasks in parallel and in real time. Application of a

RTOS abound in systems driven by microcontrollers,

especially those with sensor inputs and actuator outputs. The

RTOS allows us to organize our code into coherent units

(called threads). We can then partition our code into threads,

one will handle inputs, another will handle outputs. So this

sounds like object-oriented programming in the C-language

which is flat not OO. Clearly threads need to communicate

with each other, and some may need to respond more quickly

than others; the thread reading a sensor value must not miss a

reading, so this thread should run at a higher priority. All this

(and more) is achieved by using a RTOS. Perhaps the closest

you have seen to an RTOS is a Finite State Machine, though

there are some conceptual differences.

Multiprocessing is a different beast. This is all about how to

run a single program or a single function on multiple

hardware cores. It is not about running a separate program on

each core. This involves working with existing code and

looking for sections where computations can be done in

parallel. Consider the following operation on some arrays.

for (int i=0; i<10; i++){

 c[i] = a[i] + b[i];

}

It is straightforward to understand how this code can be

spread over multiple cores. Say we have 10 cores, then core

1 could compute c[1] = a[1] + b[1]; and core 2 could

compute c[2] = a[2] + b[2]; and so on. All computations

would occur at the same time in parallel. So, we have

effectively unrolled the loop and spread it over the cores.

Nice eh?

Figure 10.1 Distinction between multitasking

and multiprocessing.

Chapter 10 Parallel Computing 3

10.2 Real Time Operating Systems

10.2.1 A Brief Introduction
To understand how a RTOS works on a microcontroller (our

Arduino) we need to refresh our understanding of typical

microcontroller hardware. Figure 10.2 presents a very

simplified description; you can look up the ATmega328

datasheet from Atmel if you like. You recognize the CPU and

RAM, also there is I/O electronics, and a timer that can be

programmed to emit output pulses. The crucial part for the

RTOS is the part of the CPU that handles interrupts. These

come from input signals (an input pin may change state from

HIGH to LOW) and this change is used to rapidly change

which part of the user’s program is executed. Here’s some

Arduino code. In setup() pin 2 is attached to the Interrupts

system and is associated with the interrupt service routine

(ISR) here named ISR1 That routine is coded at the end.

Within loop() there is a call to another function which makes

the LEDs blink.

void setup(){

attachInterrupt(digitalPinToInterrupt(2),ISR1,

CHANGE);

}

void loop(){

 blink_LEDs();

}

void ISR1() {

 bRunning = false;

}

So, let’s say you have a push button connected to pin 2. If you

leave it alone, the code in loop() will merrily churn around.

Then you press the button and change the voltage on pin 2.

The CPU Interrupts unit recognizes this and immediately

jumps out of the executing loop() code and vectors to the ISR

and executes code there. Then it returns to the loop() code at

the point it left off. This happens extremely quickly, on an

Figure 10.2 Greatly simplified microcontroller

system.

Nature of Computing 4

ATMega328 it takes 4 CPU clock cycles, running at 16MHz

this equates to a quarter of a microsecond! It’s also important

to note that this code interruption occurs at the level of

machine instructions. That, as we shall see has some

interesting consequences.

Now, an interesting feature of microcontrollers is that their

Timers can be used to change the state of an I/O pin. So, if

that pin has an interrupt attached, then the timer can raise a

periodic interrupt. So, we can write code which will regularly

interrupt itself and go off and do something else. This is just

what is needed for a RTOS to be able to switch processing

from one task to another. Such code forms part of the RTOS

kernel (core code) and is used to run the RTOS Scheduler.

Figure 3 shows the idea where the red bars show the

interrupts generated by the scheduler; when an interrupt

occurs, the CPU is vectored to code from either task A or task

B in turn. Here I have shown regular slices of time.

10.2.2 A simple two-task program
Now let’s start to add some more detail. Consider the

following code comprising 2 tasks. I’ve omitted task setup

code. There are two LEDs attached to the microcontroller; it’s

easy to see what the code will do. Since Task1 runs for a slice,

then Task 2 runs for a slice, then if the time slices are short

enough we shall perceive that both tasks run in parallel;

LED1 blinks with a period of 1 second and LED2 with a

period of 2 seconds.

void Task1() {

 while(1) {

 turnLED1(on);

 delay(500);

 turnLED1(off);

 delay(500);

 }

}

void Task2() {

 while(1) {

 turnLED2(on);

 delay(1000);

 turnLED2(off);

 delay(1000);

 }

}

The timing in Figure 3 agrees with this example

Figure 10.3 Interrupts selecting Task A then

Task B to run.

Chapter 10 Parallel Computing 5

10.2.3 The Scheduler
It’s clear that a task can exist in one of two states running or

not-running. When a task is running, we say that the

scheduler has ‘swapped it in’ and when it is not running, the

scheduler has ‘swapped it out’. There is actually a finer

distinction; when a task is not running, it exists in one of two

substates, ready or blocked. A ready task is ready to be

swapped in at the next time slice, on the other hand a blocked

task is not ready and will not be swapped in. It may be waiting

for some input. In this case, the task just swapped out will be

immediately swapped in again (providing it is ready!). The

task states are shown in Figure 10.4.

Tasks are put into a blocked state using some RTOS API call.

for example, a request for a time delay, or waiting for some

data to arrive from another task. They can transit to a ready

state when some event occurs, like the time delay has expired

or data arrives, or there is an external interrupt from a button

push.

We can now introduce a more complete timing diagram for

the code example presented above.

Time is shown running left to right. The green bars show the

CPU clock or ‘sysTick’ and the red bars show the time slices.

Horizontal green bars show when the task is running and

yellow bars when it is ready. There are no blocked times for

either thread. On the left you can see that both tasks have been

Figure 10.4 States of a Task

Nature of Computing 6

set to have the same priority. There is also an Idle Thread

which we’ll come onto shortly. Since both threads have the

same priority, it is guaranteed that the scheduler will select

each thread to run in turn (unless one blocks); this is called

the Round Robin scheduling algorithm.

Now let’s see what happens when the priority of task B is

raised.

Here both tasks are ready, but the scheduler is guaranteed to

swap in the task with higher priority, if both tasks are ready.

While this all sounds reasonable, both situations shown in the

timing diagrams above are quite horrible, and should never

happen. You can see why; at all times the CPU is running a

task, it is totally consumed and has no time for anything else.

Also both tasks need to have the same priority to be able to

be swapped in. The cause of the problem was the calls to the

delay() function in the code, which simply burned up CPU

cycles in some dastardly horrible loop, very bad.

This is where the blocked state comes into play. FreeRTOS

has an API call vTaskDelay() which puts the task into the

blocked state for a certain number of ticks, so effectively

providing the delay. Here’s how you would use it

 while(1) {

 turnLED1(on);

 vTaskDelay(1000/portTICK_PERIOD_MS);

 turnLED1(off);

 vTaskDelay(1000/portTICK_PERIOD_MS);

 }

Chapter 10 Parallel Computing 7

and here’s what the timing diagram will look like. Orange

represents blocked.

So, what is happening here ? Task B has the higher priority

and is ready, so the scheduler swaps this in. It runs and then

calls the vTaskDelay()API function which puts itself

(taskB) into the blocked state. The scheduler sees this and

also that the lower priority task A is ready so it swaps it in.

Task A then runs until it hits its vTaskDelay() function at

which point it too blocks and is swapped out.

At this point neither tasks A or B are ready, so the scheduler

chooses the Idle Task which you can see runs merrily along.

The idle task of lowest priority is created when the scheduler

starts up and it is put into the ready state, so it has something

to run.

After a while, Task B’s delay ends, and it becomes ready so

is swapped in at s4. It runs a bit more and at t3 calls its again

and re-enters the blocked state. Fortunately, Task A is ready

so it can run again.

One more thing; the scheduler is not restricted to do swaps to

the time slices s1, s2, … but can also act at sysTick intervals

t1, t2, …

10.2.4 More Scheduling Algorithms
This section is moving into advanced territory but is

important since we discuss how the majority of

microcontroller RTOSs actually are configured. This uses the

Nature of Computing 8

Fixed Priority Pre-emptive Scheduling with Time Slicing. In

other words, forget Round Robin. What does this mean?

Well, ‘Fixed Priority’ means that the scheduler cannot change

the priority of tasks (although tasks may change their priority

and that of other tasks). ‘Pre-emptive’ means that if a low

priority task is running and a higher priority task becomes

ready, then the lower priority task will be swapped out (even

though it does not want to). We know what time slicing is, if

two tasks have equal priority then they are swapped at regular

time-slice intervals.

You can imagine, the combination of time-slicing and pre-

emption is quite powerful. Let’s look at a hypothetical set of

three tasks to see this in action.

Task B and the Idle task both run at low priority and task A

is event-driven and spends most of its time in the blocked

state until its event arrives at t1. You can see that the

scheduler time-slices task B and the idle task (same priorities)

for quite a few slices. But in the middle of slice s4-s5 where

idle starts running, task A becomes unblocked, hence ready,

and pre-empts the idle task. Task A runs from t1 to t2 to

complete its business, then the scheduler chooses to swap the

idle task in according to the Round Robin policy.

10.2.5 Possible Issues with Swapping.
There are a couple of potential issues in a multitasking

system. The first concerns shared resources such as writing

Chapter 10 Parallel Computing 9

to the serial port. Let’s say task A wants to print out the string

“Hello Cat” and task B wants to print out the string “rapture”.

Task A starts executing and manages to print “Hello C” then

it is swapped out and task B prints “rapture”. Then task A is

swapped in and completes its output “at”. So, what you

actually get is “Hello Craptureat”. Clearly, we have to protect

the printing from a context switch.

Another problem is when ‘read, modify, write’ operations are

encountered. For example, the following C-code reads the

value of the variable max stored in memory, then ORs the

value with 0x01, then writes the value back to the memory.

The assembler code is also shown

max = max | fred;

LOAD R1, [#max]

LOAD R2, [#fred]

OR R1, R2

STORE R1, [#max]

The problem comes from the fact that a single line of C-code

produces 4 lines of assembler (therefore machine code) and

it is this code that is interrupted by the scheduler. Consider

the case where task A and task B attempt to modify the same

variable max.

• Task A loads the value of max into R1

• It is then pre-empted by task B. The scheduler saves

all of taskA register values including R1 which

contains the value of max

• Task B runs all 4 lines of machine code (read, modify,

write) and updates maax then blocks.

• Task A is swapped in and its registers restored

including R1 which contains the old value of max

• Task A runs to completion and update the value of

max then writes it back.

The trouble is task A has used an out of date value for max

and it overwrites the value calculated by task B.

Nature of Computing 10

To prevent these issues, we must protect critical sections of

code from being accessed by more than one task. The crudest

is to use the critical section construct. In the example below

a print statement is wrapped in a couple of macros. These

compile into code which disable interrupts and therefore

suspends the scheduler.

taskENTER_CRITICAL();

 Serial.println(“Hello Cat”);

taskEXIT_CRITICAL();

Turning off interrupts is never a good thing it renders the

microcontroller blind to its inputs, and so it may miss a

critical event, such as a warning of an impending collision.

A better way is to use a semaphore called a Mutex (from

mutual exclusion). Think of a mutex as a single token which

only one task can possess at any time, shown in Figure 10.5

as a yellow ball. Initially no task has the mutex, then task A

tries to take it and it succeeds. It then calls its print() function.

Shortly after, as task A is in the middle of its printing, task B

wants to print, so it tries to take the mutex. But it can’t (since

task A has it) so task B enters the blocked state. When task A

has completed printing, it returns the mutex, then it is given

to task B which unblocks and does its printing.

10.2.6 A few loose threads
Reading around the subject, you might come across different

terminology, some texts refer to ‘threads’ where we have

referred to ‘tasks’. Another name for ‘swapping in and out’ is

‘context switching’. We have only hinted at what actually

happens during a context switch. Remember this occurs at

machine instruction level, so the exact state of the machine

needs to be saved (the contents of its registers, any local

variables and the instruction pointer) before it’s swapped out.

Only then can the task be later restored. This saving is done

using a stack located in each thread.

Figure 10.4 Yellow Mutex gives Task A

exclusive access to the printer since Task B

gets itself blocked.

Chapter 10 Parallel Computing 11

10.3. Multiprocessing with OpenMP

10.3.1 A Brief Introduction
While there are many supercomputer architectures, two

significant ‘poles’ of design stand out. First is the ‘shared

memory’ architecture. Here the fundamental design principle

is to share memory between each processor. While each

processor has its own local cache (system) there is shared

memory available to all processors Fig.10.6 (top) and that’s

where they collaborate. For example, if several processors

update individual elements of a vector in parallel, then that

vector will be in shared memory. OpenMP supports a shared

memory architecture and provides the ability to set up teams

of processing threads (operating on different processors) and

share the work between them. OpenMP is not a language, as

we shall see it comprises a number of compiler ‘directives’

which the programmer uses to identify regions of code they

wish to parallelize.

The other end of the pole is ‘distributed memory’ such as in

a networked or ‘cluster’ processing configuration, Fig.6

(bottom). Here, a different programming model is needed,

which is referred to as ‘message passing’. Since memory is

not shared, each nodes needs to message other nodes to

coordinate processing of variables. The industry standard is

‘MPI’ which is often used by the hi-tech community where

clusters of machines (serious boxes the size of a sub-post

office) are common.

MPI programming can be tricky and normally requires re-

programming of existing code to parallelize it, and certainly

does not support an incremental port from sequential to

parallel code. It is here that OpenMP shines, since (as

mentioned) it consists of a set of ‘directives’ which the

developer can add into existing code, to tell the compiler what

sections should be parallelized. Visual Studio has OpenMP

built in for C, C++ and Fortran, not for C#. So, you can write

parallel programs, today!

Figure 10.5 Shared memory (top) and distributed

memory (bottom) multiprocessing architectures

Nature of Computing 12

10.3.2 The OpenMP Model
The OpenMP API consists of a number of ‘directives’ that

tell the compiler when and how to parallelize code; we shall

see some of these below. These directives take the form of

#pragma statements, inserted into existing sequential code to

parallelize it. In addition, OpenMP provides the programmer

with (i) the means to create a ‘team’ of threads, (ii) structures

to enable work sharing between the team members, (iii)

specification whether variables are shared across all threads,

or private to each thread, and of course (iv) a load of ways to

synchronize all of this. OpenMP uses a ‘fork-join’ approach

to execution which you may be familiar with if you were

brought up on UNIX. This is shown in Fig.10.7 where the

program execution flow starts from top and runs to bottom.

Starting with one processing thread, there is a fork which

creates a team of threads and does some useful work in

parallel. When this is done, all threads agree to rendezvous at

a point in time and to join after which one thread takes over

the processing which becomes sequential again. For example,

the initial sequential part could be to gather user input, the

parallel part could be a multi-body simulation, and the final

serial part could be the output of the body final positions.

Let’s have a look at a couple of important OpenMP

directives, and then give some examples along the way.

10.3.3 The Parallel Construct
To move from a single sequential thread and create a team of

threads (fork) running in parallel we wrap the code we wish

to parallelize, inside this construct.

#pragma omp parallel

{

 our existing code which we want to run in parallel

}

Figure 10.6 Fork-Join software architecture

Chapter 10 Parallel Computing 13

At the end of this parallel region there is an implied barrier

which forces all threads in the team to wait until they have

completed their work. Then one thread will take on the

remaining sequential programming. While this construct

guarantees we have a team of threads, it does not specify how

their work is to be shared. There are four work-sharing

constructs, we shall encounter only a couple.

10.3.4 The Loop Construct
This is perhaps the most useful and important way to

parallelize programs. Just think of how many loops you code

on a daily basis. Here’s how you would parallelize your loop.

Let’s say you have this in your existing code

for(i=0; i < 4; i++) {

 a[i] = b[i]*c[i];

}

In your sequential code a single core would calculate the

value of a[i] in turn. So, it would calculate a[0], then a[1],

then a[2], then a[3]. That works fine. But we can do this 4

times as fast if we use 4 cores, where one core calculates each

a[i]. Here’s how we use the #pragma omp for construct.

#pragma omp parallel

{

 #pragma omp for

 for(i=0; i < 4; i++) {

 a[i] = b[i]*c[i];

 }

}

Here we first declare a parallel region #pragma omp

parallel. Then we indicate that our for loop is to be

parallelized using the #pragma omp for directive.

So ,what does this do? Say we have 4 cores on our machine.

The following happens in parallel

Nature of Computing 14

core 0 calculates a[0]

core 1 calculates a[1]

core 2 calculates a[2]

core 3 calculates a[3]

So, we have obtained a x4 speedup in our computations, and

we have done this by ‘wrapping’ our existing code in a couple

of OpenMP compiler directives.

10.3.5 The Sections Construct
This is perhaps a little easier to understand than parallelizing

loops (but perhaps not as useful). The idea is that we may

have sections of our code which are independent. Yep, think

functions. Let’s say we have two functions in our code which

we call sequentially like this

main() {

 func1();

 func2();

}

If we have two threads (or more) then we can execute both

functions in parallel effectively assigning the processing of

each function to an independent thread. Here we make use of

the sections construct, placing this in a parallel region

#pragma omp parallel

{

 #pragma omp sections

 {

 #pragma omp section

 func1();

 #pragma omp section

 func2();

 }

}

Chapter 10 Parallel Computing 15

So, one thread will execute funct1() at the same time as the

second thread is executing funct2(). One potential problem

called ‘load imbalance’ occurs which reduces the

parallelization speed-up. If one function has more work to do

than the other, then the second thread will be hanging around

waiting for the first, effectively doing nothing. Also, if you

had 5 functions and only 4 threads then one thread would do

twice the amount of work and the other 3 would be twiddling

their thumbs.

10.3.6 The Barrier Construct
A barrier is a point in the execution of code where all threads

wait for each other; no thread is allowed to proceed until all

threads have reached the barrier. While there is an explicit

barrier construct #pragma omp barrier which can be

inserted into code, other constructs provide an implied barrier

which provides us with some very useful synchronization

tools. Consider the code below which effectively contains

two sections! In the first, the values of vector a[i] are

initialized in parallel, then when all have been initialized,

they are used in the second section in some computation.

#pragma omp parallel

{

 #pragma omp for

 for(i=0;i<N;i++)

 a[i] = i;

 #pragma omp for

 for(i=0;i<N;i++)

 b[i] = 2*a[i];

}

Here there is an implied barrier at the end of the first omp for

so all the values of a[i] are initialized before they are used in

the second omp for.

One case where a barrier can be explicitly used is in our

classic read-modify-write situation, which we could protect

using a critical section or semaphore. If we inserted a barrier

Nature of Computing 16

between writes to and read from a shared variable, that would

avoid a data-race condition.

10.3.7 When OpenMP goes wrong or can’t ever work.

Code which cannot be parallelized.

Let’s compare the two loops shown below. The first can be

parallelized but the second cannot.

for(i=0;i<N;i++)

 a[i] = a[i] + b[i];

for(i=0;i<N;i++)

 a[i] = a[i+1] + b[i];

In the first loop, the iterations are independent, and so can be

shared across a whole team of threads, each thread dealing

with the i’th update. The second loop has a dependency; the

value of a[i] depends on the next value in the array a[i]. Say

one thread is updating a[i] and expects to find the value of

a[i+1] at that time. It might find it, but it might not, because

another thread may have already updated a[i+1]; We just

can’t know. If we ran this code, it might work correctly but it

might not; the behaviour is non-deterministic. This is another

example of a data race condition, here introduced by an

incorrect parallelization of a loop.

Thread-Safe and non-Thread-Safe Functions

We have stressed that one strength of OpenMP is that it

allows us to use existing code. More than likely, our code

uses a library containing functions which we have not written,

and so have no idea what is in the library. In particular we

may not know if the library makes use of global variables.

This can lead to a problem. Here’s a toy example. The main

function calls a single library function which updates a global

variable.

int nastyGlobal;

void lib_func() {

 nastyGlobal++;

Chapter 10 Parallel Computing 17

 // some meaningful stuff

}

main() {

 #pragma omp parallel

 {

 lib_func();

 }

}

Since we are calling the library function from a parallel

region multiple threads may try to access nastyGlobal at the

same time; we have a read-modify-write operation. Here the

problem is easily solved putting the update into a critical

region,

void lib_func() {

 #pragma omp critical

 nastyGlobal++;

 // some meaningful stuff

}

10.4 Applications of OpenMP

10.4.1 Matrix – Vector Multiplication
Matrix-vector multiplication is an important computation

especially for computer graphics and even more so for games.

Consider a 3D object comprising a number of vertices

(corners) and edges. In a game, objects move, they are

translated and rotated as shown in Fig. 10.7. Both translation

and rotation are effected through a matrix-vector

multiplication. The coordinates of one vertex are labelled

relative to the graphics system origin in Fog.10.7.

 We won’t explain the details of the maths here, but

simply state that each of the new coordinate x’, y’, z’ is some

linear combination of the old coordinates x, y, z. This can be

expressed as a matrix-vector multiplication which transforms

the old to new coordinates, the matrix-vector multiplication

is shown in Fig. 10.8

Figure 10,7 Transformation of a graphical object, a

rotation and a translation

Nature of Computing 18

The transformed vector is the column on the right. The

mechanics of calculating its components is straightforward,

e.g., we have,

𝑥′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧

and similar for the other elements. Note how I’ve labelled the

elements of the matrix rows, as successive characters with

jumps between the rows. This is intentional and we shall see

why in a moment. Let’s see how to code this. We need to

iterate over both rows and columns so we need a nested loop

like this, where Input and Output vector are shown.

The above code is ‘row-dominant’ since each complete row

calculation is completed in turn. But we could iterate over the

columns in the outer loop like this.

Both of these nested loops have exactly the same number of

operations, so we should expect them to have equal

performance. But we find on investigation that the row-

dominant computation is more much efficient especially for

large matrices (e.g. 1000 rows and 1000 columns). Let’s see

why.

Figure 10. 8 Matrix vector multiplication

Chapter 10 Parallel Computing 19

It turns out there are two factors we need to understand, the

first concerns hardware, specifically how memory is

organized, and the second concerns software, specifically

how the C-compiler organizes data in memory. Fig. 10.9

shows the hardware situation.

 The data is loaded onto motherboard memory (RAM)

and the CPU loads the part of data required for a given

computation into its cache. RAM is cheap but slow, Cache is

extremely fast but limited in size. For a given computation

the cache may not be large enough to hold all the data

required for the computation, so data has to be loaded in

chunk by chunk. This data transfer takes time and adds an

overhead to the total computation time. This is especially

relevant to matrix-vector calculations.

 The C-compiler loads a matrix in row-dominant form

which means that all elements of a given row are grouped

sequentially. This is shown below; the left column is the

RAM address, relative to some base address. The centre

column shows which matrix element is stored at each address

and the right column shows the data for the example matrix.

Let’s take a (somewhat daft) toy problem. Assume that the

cache only has 6 cells. So when the matrix is loaded into

cache, only the first two rows will be in place. This is fine for

a row-dominant loop where we start with row1 then access

columns 1 to 3 since all the data is in the cache. But if we take

Figure 10.9 Memory organization showing external

Memory (RAM) and the Cache memory on the CPU

chip.

Nature of Computing 20

a column-dominant loop, then for each column we need row1

then row 2 then row 3. But row3 is not in the cache at this

time, so we must go back to RAM and grab it from there

which takes time. While this is a toy problem even a large

cache may be overwhelmed by a huge matrix. So the

takeaway is to use row-dominant coding (if you are using C

or C++).

 Now to parallelization. It’s easy to see how this is

possible. Consider the slightly smaller matrix-vector

calculation in Fig.10.10 where the whole computation is

shown at the top. It is easy to understand that this may be split

into two computations which are independent, to top row

times the input vector, and the bottom row times the input

vector. Since these computations are independent (do not

need a result from the other one) they can be assigned to two

cores and run in parallel. The OpenMP parallelization is

shown below, where we make some of OpenMP’s ‘rules’

explicit.

The ‘rules’ are all about data sharing between threads. First

we write default(none) to turn off defaults so we have to state

the data sharing rules explicitly. First, all threads need to

access nrRows, nrCols, Input, Output and Matrix, so these

variables must be shared by all threads. The iteration

variables row, col need to be unique to each thread, therefore

private. Think of the consequences if this were not the case.

If row and col were shared then one thread could change the

Figure 10.10 Decomposing matrix-vector

multiplication into parallel processing of rows

Chapter 10 Parallel Computing 21

iteration variable of the other producing unpredictable run-

time behaviour. If the variables identified as shared had been

made private, they would be uninitialized (one of the rules of

OpenMP) so nrRows and nrCols would be unknown. You get

the idea, The same is true of the vectors and matrix. In

addition, there is another OpenMP rule, that if a variable is

private then it is not accessible outside of the parallel region,

so in this case we could not access Output.

10.4.2 The N-Body Problem
Here we are looking at scenarios where many component

objects move around, and their movement is described by

forces of interaction. Think about gravitational attraction that

makes the planets orbit, it also makes asteroids orbit around

the Earth, and space-junk too. And gravitational attraction

occurs between stars to, so we have a huge system of

interacting objects where 𝑁 ≈ 1015. Solving such systems by

computation is clearly quite challenging.

 You may ask if there are any systems where we don’t

need to compute but can get the exact solution of motion

using maths. The answer is yes, but only for N=2. As soon as

we have more than 2 bodies, then maths fails and we need to

compute.

 Other scenarios include modelling pedestrian footfall,

the ‘Social Force Model’, the motion of electrons in circuits

which may produce x-rays. These systems, all based on

forces, share a common structure, and the computational

solutions are all rather similar. Let’s take as an example the

Social Force Model of pedestrian interaction. Here the idea is

quite simple, as pedestrians move around in crowds, or walk

down a high-street, they exert repulsive forces on each other,

to avoid collisions and to obtain ‘social distancing’.

 Details of the interactions are shown in Fig.10.11. The

focus is on pedestrian i (yellow) and to calculate its

movement we need to get the forces from all the surrounding

pedestrians j. The force 𝐹𝑖𝑗 is the force on pedestrian i from

Figure 10.11. Forces from pedestrians j (green)

onto pedestrian i (yellow).

Nature of Computing 22

each pedestrian j. You can see this is repulsive and is aligned

on the axis between pedestrian i and pedestrian j. Also you

can see that the closer j is to i then the larger is the force from

j to i.

 How do we approach coding this? Well, we have 4

pedestrians. So, we must calculate the force on each (outer

loop) from the other 3 (inner loop). Of course, we must avoid

calculating the force of a pedestrian on itself which would be

infinite. We could split the computation into two sequential

parts. First we compute the total force on each pedestrian by

summing interaction forces between this and all other

pedestrians. Second, we use this total force on each

pedestrian to update its position. Here’s the pseudo-code.

The two inner loops are iterating over pedestrians, so

parallelizing these loops will map pedestrians onto cores;

each core will deal with one specific pedestrian. Here’s a

possible parallelization.

Chapter 10 Parallel Computing 23

Now we need to look at the details to check if there are any

data dependencies which could cause a race condition.

The first loop will look like this.

Each thread will execute code for a particular index j. Vector

d is private to each thread, so is dist and force_mag and

force_ij since these are different for each body.Of course

index j is private. Different threads do simultaneously access

the bodies array (go get pos and mass) but these variables are

only read. So, it looks as though there is no race condition

here.

 The second loop has the form shown below. Here the

shared variables are again the array bodies and we now have

the time interval dT. These are read so again we do not have

a race condition.

 You may wish to combine the two loops into one

which is fine and the same conclusions will apply so we

conclude that this algorithm is parallelizable.

Nature of Computing 24

The final pragma we could use in this case would be,

