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Chapter 12 
Production Systems 

12.1 A brief Introduction 
In this chapter we continue our study of language in the 

specific context of computing. Natural languages, spoken or 

written, are complex beasts, of course we are not usually 

aware of this when we communicate in our mother tongue. 

Only when we learn a foreign language do we need to focus 

on the grammar of that language. Grammar essentially tells 

us how to string words together to produce meaning, and this 

process of string production can go on for a long time and be 

spread over many sheets of A41. 

 We shall not discuss natural language in this chapter, 

but rather engineered languages, designed for a specific 

purpose, and related to computing. But there is a more 

fundamental aspect of the material which follows, the 

production systems we shall study capture the essence of 

computation.  By this I mean there is a production system 

created by Emile Post which is equivalent to the Turing 

machine and the latter describes totally what is going on in 

your machine at the moment. 

 Consider the following system, where we start with a 

string of one symbols 1 and we apply the rule ‘replace any 

occurrence of a 1 with two symbols 11’. So if we start with 1 

we get 11. Now let’s continue and replace these 1s so we get 

1111 and so on. The result is shown in Fig. 12.1 and you can 

see that, if we take the denary representation of our strings, 

then each application of the rule is multiplying the ‘input’ 

number by 2. Now that’s interesting, we can do arithmetic by 

applying rules to strings! This may remind you of some 

natural process, cell division or even growth in a bacterial 

 
1 We shall not consider ‘word limits’ as you may encounter on writing 

an assignment or report, since that is a somewhat un-natural stance, 

especially if you are writing a novel. 

Figure 10.1 1Left shows string production, right 

shows the equivalent arithmetic operation, 
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colony. Fig 12.2 represents the division of a single cell and 

subsequent divisions; sure, this is a form of recursion. 

12.2 Production System Grammar 

12.2.1 How to specify a grammar 
A given language has a set of symbols called the alphabet 

(the above example just had one 1) and produces strings of 

these symbols. There has to be a starting string, this is called 

the axiom and also production rules which tell you how to 

generate successive strings. The axiom and rules together is 

called the grammar. So the grammar for the above example 

is, 

Axiom 1 
Rule  1 → 11 

 

Let’s look at the following grammar where the alphabet has 

two characters F and +, 

Axiom F 
Rule  F → F+F 

 

The rule says that ‘whenever we have an F in any string, we 

replace it with F + F. Applying the rule to the axiom, we 

produce F + F. Then applying it again we produce F + F + F 

+ F. Continuing, we generate the following strings, called 

theorems.  

Depth Theorems 
0 F 
1 F + F 
2 F + F + F + F 
3 F + F + F + F + F + F + F + F 

The depth of the production is just how many times we apply 

the production rule(s). Now, theorems are strings produced 

by the grammar rather than other strings, e.g., FFF is not a 

theorem. 

Figure 12.2 Arithmetic by cell division. 
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12.2.2 The Turtle Implementation of Strings 
The above strings by themselves seem not to have much 

sense, but this changes dramatically when the characters are 

interpreted as instructions to a turtle equipped with a pen 

(turtle graphics). If F is interpreted as ‘move forward one unit 

with the pen down’ and + is interpreted as ‘turn through a 

specified angle’, then the above strings make sense. If we 

choose an angle of 90 degrees, then the rule F + F looks like 

Fig.12.3. It’s easy to see that the second production (depth 2) 

is a square, Fig.12.4. 

 Let’s take another example which reveals another 

way of thinking about production rules. Here is the grammar, 

Axiom F + + F + + F 
Rule  F → F - F + + F - F 

and we take the rotation angle for the + as 60 degrees. The 

axiom, the rule and the first two productions are shown 

below. The axiom clearly generates a triangle. The 

production rule is interesting; note that it has the same total 

anticlockwise and clockwise turns, so following the 

application of the rule, the turtle ends up pointing the same 

way it started. You can also see what the rule does, going 

from the axiom to the 1st production, each straight line is 

replaced by the rule shape, and the same happens going from 

depth 1 to depth 2. Of course, this is what the rule says. 

 

Figure 12.3 Turtle moves forward F then turns 90 

degrees clockwise + then moves forwards again. 

Figure 12.4 Depth-2 production using rule F + F 
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The above example is known as the Koch Snowflake first 

published in 1904. As an aside it’s interesting to work out the 

perimeter length of the snowflake. Looking at the rule, you 

can see that this divides a line length L into 3 vertical parts of 

length L/3. But there are 4 parts in the rule, each of length 3, 

so the rule has length 4/3. Since each application of the rule 

increases the total length of the curve by 4/3, after n 

applications the total length becomes, 

3 (
4

3
)
𝑛

 

so the length of the snowflake grows quickly, for n = 50 the 

length is around 6 million. 

 It is interesting to print out the theorems generated by 

the production system corresponding to the above example 

curves. We find the following theorems, generated from the 

axiom by successive application of the rules, clearly they get 

very long. 

Depth Theorem 

1 F-F++F-F++F-F++F-F++F-F++F-F 
2 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-

F-F-F++F-F++F-F++ 
F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F 

3 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F-F-F++F-F-
F-F++F-F++F-F++F 
-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F-F-F++F-F-F-F++F-F++F-F+ 
+F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F-F-F++F-F-F-F++F-F++F- 
F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-
F-F++F-F-F-F++F-F-F-F++F-F++ 
F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-
F-F-F++F-F-F-F++F-F-F-F++F-F 
++F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-
F++F-F-F-F++F-F-F-F++F-F-F-F++F 
-F++F-F++F-F-F-F++F-F 
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Let’s take another example, the quadratic Koch island 

produced by the following grammar where the rotation angle 

is 90 degrees. 

Axiom F + F + F + F 
Rule  F → F + F – F – FF + F + F - F 

The axiom describes the square as usual, and the rule is 

shown in Fig.12.5. You an easily see the rule in action: 

Starting from the bottom, go forward F, then turn right + then 

go forward F, then turn left – then left again – then two steps 

forward FF then right + then forward F then turn right + then 

forward F then turn left – then forward. The number of right 

turns (‘+’ = 3) equals the number of left turns (‘-‘ = 3) so we 

end up going in the same direction we started. Some theorems 

are shown below. 

12.3 Extending the Grammar 

12.3.1 The ‘do not plot’ symbol ‘X’ 
Here we introduce a new character in the alphabet, X. The 

production system works exactly as before, only the turtle 

when it sees an X just ignores it and does not plot anything. 

Here’s an example system. 

Axiom X 
Rule  X → F + F + X 

To see how this works, let’s generate a few theorems. 

 

Figure 12.5 Quadratic Koch Island. 
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Axiom X 
Depth 1 F+F+X 
Depth 2 F+F+F+F+X 
Depth 3 F+F+F+F+F+F+X 

This is straightforward, you can see that the rule tells us to 

replace all occurrences of X with F+F+X which is exactly 

what happens. Also we can give a higher-order 

interpretation, we see that the strings grow by F+F on each 

production and the string ends with a + then an X at the end. 

So the X at the end causes the strings to grow from the end. 

You can see this in the theorems turtleized below. 

 We can generalize the use of the ‘no-plot’ symbol to 

production systems where turtelization is not necessary for a 

successful interpretation. Consider the following system. 

Alphabet 1 
Axiom 11 

Rule  X → X11 

Some of the theorems produced by this system are tabulated 

below where we have shown the denary representation. 

Clearly this system generates the even numbers. 

Axiom 11 2 
Depth 1 1111 4 
Depth 2 111111 6 
Depth 3 11111111 8 
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You can also see that if we started with the axiom 1, then we 

would generate the odd numbers. So we can create any 

number! 

 Let’s have a look at one more example, the system 

described by, 

Alphabet 1, +, = 
Axiom 1 + 1 = 11 
Rule  X  + Y = Z → X1 + Y = Z1 

The rule means, ‘if there is a theorem that consists of some 

string X followed by a + followed by a second string Y 

followed by an = followed by a third string Z, then we can 

create a new theorem by appending 1 to X and a 1 to the Z. 

Here’s some theorems generated. 

Axiom 1 + 1 = 11 
Depth 1 11 + 1 = 111 
Depth 2 111 + 1 = 1111 
Depth 3 1111 + 1 = 11111 

It’s quite easy to see that this system is doing an arithmetic 

addition. Now that’s an interesting result, we now know that 

production systems can represent numbers and it looks as 

though they can be designed to perform arithmetic operations 

on those numbers, they can compute! 

12.3.2 Systems with Multiple Rules 
Production systems may be constructed with more than one 

rule. The question then becomes, say we have two rules, then 

which one gets executed first? Consider this toy system. 

Alphabet A, B 
Axiom B 
Rule 1 A → AB 
Rule 2 B → A 

The first rule tells us to replace an A by AB and the second 

rule to replace B by A. Again which rule fires first. Well 

production systems are special in that both rules fire 
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together, so we may simultaneously replace occurrences of 

both A and B in a string. Here’s a derivation. 

Axiom B 
Rule 1 (only possibility) A 
Rule 2 (only possibility) AB 
Rule 2 on A, Rule 1 on B ABA 
Rule 2 on A, Rule 1 on B, rule 2 on A ABAAB 

But we have to be careful. Look at the last derivation starting 

with the theorem ABA. We replace A with AB, then we move 

onto the original B which we replace with A, then we move 

onto the final A which we replace with AB. What we don’t 

do, is when we replace A with AB, we do not immediately 

replace the B with an A. In other words, we process each 

string from left to right. Fig.12.6 shows this explicitly where 

we traverse a tree, from top to bottom. 

12.4 Lindenmayer Systems 

12.4.1 Mechanics of the L-Systems 
This is a most beautiful application of production systems, 

these L-Systems let us grow realistic digital plants, please 

look ahead to see some examples of complete plants before 

we set down to study some detail. Let’s first see where we are 

going, Fig. 12.7 shows the depth-1 and depth-2 of the 

theorems our system will generate, you can see the genesis of 

a branching structure very suggestive of a plant. 

 Before we look at the production system, we need to 

understand one concept from computer hardware, the stack. 

Stack are implemented in RAM and can contain many values, 

but unlike RAM the elements may not be accessed 

individually. Instead the stack has a single port of entry and 

exit. So store a variable, we push it onto the stack through this 

port, and to read a variable, we pop it from the stack. The 

diagram below shows the stack in operation. Think of each 

row as holding a 32-bit integer. 

Fig. 12.6 Tree representation of the AB system. 

Fig.12.7 First two theorems of our first L-System 
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 Initially the stack is empty and there is a pointer (red 

arrow) to the bottom of the stack where we save and retrieve 

our data values. Let’s say we are writing some assembler 

code and we have variables A and B which hold some 

number. When we code push A then the value of A is pushed 

into the bottom of the stack, then we code push B and the 

value of B is pushed into the bottom, and A moves up a slot. 

So both A and B are stored safely. Now we wish to get some 

data from the stack, so we code pop. Note we cannot ask for 

A or B, we get whatever is at the bottom of the stack, at the 

stack pointer location. So here we get B from the stack, and 

A tumbles down. 

 To produce plants we need a push operator, the 

character [ and the pop operator, the character ]. In a well-

formed string we must have equal numbers of pushes and 

pops. So let’s see this in action, consider the following 

grammar. 

Alphabet F, +, [, ] 
Axiom F 
Rule  F → F [ - F ] + F 

 

Let’s apply the rule to the axiom which will generate the 

theorem, 

F → F [ - F ] + F 

 

and look at the detailed turtle movements shown in the 

diagram below. 
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The turtle starts at (a) and the first string character F moves it 

forward (b). Then comes a push [ so the turtle remembers its 

state = location and orientation at (b). Then comes a turn left 

– which here is 30 degrees which is (c). Then another F so it 

moves forwards to (d). Then we hit a pop ] so its pushed state 

(b) is restored which is (e). Then it is told to turn right + (f) 

and finally to move forward F to bring it to (g) where it is 

located with the last rotation intact. So you can see how the 

plant shown in Fig.12.7 (depth 1) is produced. 

 Now let’s turn to Fig.12.7 (depth 2) and try to 

understand how this plant is produced. Hold on to your hat! 

Here is the theorem produced at depth 2 where we have color 

coded and applied superscripts to the pushes and pops so you 

can see how they work. In the case of b and c they are nested. 

 
 

Please consult the diagram below. We start at 1 and move 

forward F to 2. Then we push the turtle state a onto the stack 

[𝒂 and then turn left – and move forward F and arrive at 3. 

Now we pop the turtle state from the stack ]𝒂 and we return 

to 2. Next we turn right + and move forward F which brings 

us to 4. 

 Now we are at 4 and we push the state b onto the stack 

[𝒃 turn left – and move forward F which brings us to 5. Now 

we do another push [𝑐 (so that we have c at the bottom of the 

stack and b above it) and we turn left – and move forward F 

so we end up at 6. 
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 Now we pop c off the stack ]𝑐, and so we return to 5. 

We then turn right + and move forward F which brings us to 

7, so we have completed one of the branches. Next we have 

to complete the other branch, so we pop b off the stack ]𝑏 

which returns us to 4 ready to start the other branch, We turn 

right + and move forward F which brings us to 8. Here we 

push d onto the stack [𝑑 then turn left - and move forward F 

to 9. To draw the remaining stem, we must return to 8, so we 

push d off the stack ]𝑑 and we turn right + and move forward 

F so we arrive at our destination 10. 

Note in the above diagram how the pushes and pops are 

paired. 

12.4.2 An Atlas of Plant Productions. 
The diagrams below show plants produced by the following 

production system for a range of angles and depths. The 

angle controls the lateral spread of the plant, and the depth 

controls its ‘bushiness’. 

Alphabet F, +, [, ] 
Axiom F 
Rule  F → F [ + F ] F [ - F ] [ F ] 
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..Here’s a selection of plants cultured by other systems. Each 

plant in the top row is for depth = 3, angle = 30 degrees, and 

the bottom row is depth = 4, angle = 30 degrees. 

12.5 Designing and Engineering Systems 
It is possible to design an L-System to draw a certain type of 

shape. To do so, we must try to find some basic atomic rules 

for constructing shapes. 



Nature of Computing      14 
 

12.5.1 Concatenating Shapes 
Let’s say we want to create a chain of identical shapes each 

shape is the same an described by a string A. So we will need 

to produce theorems A, then AA, then AAA. Let’s make 

things a little more complete, and require that each additional 

shape is rotated with respect to the prior. So we need a list of 

theorems that look like this 

A+ 

A+A+ 

A+A+A+ 

You can see that concatenation can be obtained in general by 

using the dummy character X 

Axiom X 
Rule  X → A+  X 

which will produce the following theorems, which is what we 

want. 

A+X 

A+A+X 

A+A+A+X 
 

Take the example with A = F + F – F , this element is shown 

in Fig.12.8 together with the depth 3 production. Here is the 

system, with A substituted. 

Axiom X 
Rule  X → F + F – F +  X 

 

12.5.2 Bicycle Spokes 
Now, let’s say we wanted to draw a radial pattern of simple 

spokes as shown in Fig.12.9. How would we approach this? 

Well when we draw a line using F we need to return to the 

starting point. We know how to do that, we just use the push 

and pop operators like this [F]. But the next spoke is rotated 

Fig.12.8 Left shows shape element, and right shows 

concatenation of 3 elements with angle of 30 

degrees. 
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an angle, so we need something like this [F]+. So we need to 

create theorems like this 

[F]+ First spoke, turn ready for second 

[F]+ [F]+ Second spoke, turn ready for third 

[F]+ [F]+ [F]+ Third spoke, turn ready for fourth 

So we have a concatenation which we already have solved. 

The production system therefore becomes, 

Axiom X 
Rule  X → [F] +  X 

 

Of course we can replace F in the above rule with A which 

describes the above shape element. In that case we get result 

in Fig.12.10. 

12.5.3 Moving without Drawing: The Cantor Set 
The Cantor Set is a very interesting mathematical object. You 

can make such a set by drawing a line (depth 0) then erasing 

the middle third (depth 1) and continuing to do this 

recursively. This is shown in the diagram below. 

We introduce a new character f into our alphabet which 

means move forward but do not draw, the turtle’s pen is 

well and truly raised up. Here is our production system. 

Axiom +F 
Rule 1  F → F f F 
Rule 2 f → f f f 

First note the + in the axiom. This is to turn the turtle so it 

draws in a horizontal direction. Rule 1 clearly splits a line into 

3 line segments, the first and third are drawn, the second is 

blank. Why do we need the second rule? This ensures a 

constant gap between line segments when they are split. 

 

Fig.12.9 Bicycle spokes for depth of 5. 

Fig.12.10 Depth-5 radial arrangement of shape 

elements. 



Nature of Computing      16 
 

Consider the depth 2 production string F f F f f f F f F, this is 

produced and expressed as the following tree. Remember 

both rules apply simultaneously. The black lines are drawn 

and the grey lines show spaces. This agrees with the depth-2 

diagram drawn above. 

 

 

 

 

 

 


