
Chapter 12 Production Systems 1

Chapter 12
Production Systems

12.1 A brief Introduction
In this chapter we continue our study of language in the

specific context of computing. Natural languages, spoken or

written, are complex beasts, of course we are not usually

aware of this when we communicate in our mother tongue.

Only when we learn a foreign language do we need to focus

on the grammar of that language. Grammar essentially tells

us how to string words together to produce meaning, and this

process of string production can go on for a long time and be

spread over many sheets of A41.

 We shall not discuss natural language in this chapter,

but rather engineered languages, designed for a specific

purpose, and related to computing. But there is a more

fundamental aspect of the material which follows, the

production systems we shall study capture the essence of

computation. By this I mean there is a production system

created by Emile Post which is equivalent to the Turing

machine and the latter describes totally what is going on in

your machine at the moment.

 Consider the following system, where we start with a

string of one symbols 1 and we apply the rule ‘replace any

occurrence of a 1 with two symbols 11’. So if we start with 1

we get 11. Now let’s continue and replace these 1s so we get

1111 and so on. The result is shown in Fig. 12.1 and you can

see that, if we take the denary representation of our strings,

then each application of the rule is multiplying the ‘input’

number by 2. Now that’s interesting, we can do arithmetic by

applying rules to strings! This may remind you of some

natural process, cell division or even growth in a bacterial

1 We shall not consider ‘word limits’ as you may encounter on writing

an assignment or report, since that is a somewhat un-natural stance,

especially if you are writing a novel.

Figure 10.1 1Left shows string production, right

shows the equivalent arithmetic operation,

Nature of Computing 2

colony. Fig 12.2 represents the division of a single cell and

subsequent divisions; sure, this is a form of recursion.

12.2 Production System Grammar

12.2.1 How to specify a grammar
A given language has a set of symbols called the alphabet

(the above example just had one 1) and produces strings of

these symbols. There has to be a starting string, this is called

the axiom and also production rules which tell you how to

generate successive strings. The axiom and rules together is

called the grammar. So the grammar for the above example

is,

Axiom 1
Rule 1 → 11

Let’s look at the following grammar where the alphabet has

two characters F and +,

Axiom F
Rule F → F+F

The rule says that ‘whenever we have an F in any string, we

replace it with F + F. Applying the rule to the axiom, we

produce F + F. Then applying it again we produce F + F + F

+ F. Continuing, we generate the following strings, called

theorems.

Depth Theorems
0 F
1 F + F
2 F + F + F + F
3 F + F + F + F + F + F + F + F

The depth of the production is just how many times we apply

the production rule(s). Now, theorems are strings produced

by the grammar rather than other strings, e.g., FFF is not a

theorem.

Figure 12.2 Arithmetic by cell division.

Chapter 12 Production Systems 3

12.2.2 The Turtle Implementation of Strings
The above strings by themselves seem not to have much

sense, but this changes dramatically when the characters are

interpreted as instructions to a turtle equipped with a pen

(turtle graphics). If F is interpreted as ‘move forward one unit

with the pen down’ and + is interpreted as ‘turn through a

specified angle’, then the above strings make sense. If we

choose an angle of 90 degrees, then the rule F + F looks like

Fig.12.3. It’s easy to see that the second production (depth 2)

is a square, Fig.12.4.

 Let’s take another example which reveals another

way of thinking about production rules. Here is the grammar,

Axiom F + + F + + F
Rule F → F - F + + F - F

and we take the rotation angle for the + as 60 degrees. The

axiom, the rule and the first two productions are shown

below. The axiom clearly generates a triangle. The

production rule is interesting; note that it has the same total

anticlockwise and clockwise turns, so following the

application of the rule, the turtle ends up pointing the same

way it started. You can also see what the rule does, going

from the axiom to the 1st production, each straight line is

replaced by the rule shape, and the same happens going from

depth 1 to depth 2. Of course, this is what the rule says.

Figure 12.3 Turtle moves forward F then turns 90

degrees clockwise + then moves forwards again.

Figure 12.4 Depth-2 production using rule F + F

Nature of Computing 4

The above example is known as the Koch Snowflake first

published in 1904. As an aside it’s interesting to work out the

perimeter length of the snowflake. Looking at the rule, you

can see that this divides a line length L into 3 vertical parts of

length L/3. But there are 4 parts in the rule, each of length 3,

so the rule has length 4/3. Since each application of the rule

increases the total length of the curve by 4/3, after n

applications the total length becomes,

3 (
4

3
)
𝑛

so the length of the snowflake grows quickly, for n = 50 the

length is around 6 million.

 It is interesting to print out the theorems generated by

the production system corresponding to the above example

curves. We find the following theorems, generated from the

axiom by successive application of the rules, clearly they get

very long.

Depth Theorem

1 F-F++F-F++F-F++F-F++F-F++F-F
2 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-

F-F-F++F-F++F-F++
F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F

3 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F-F-F++F-F-
F-F++F-F++F-F++F
-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F-F-F++F-F-F-F++F-F++F-F+
+F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-
F++F-F-F-F++F-F-F-F++F-F++F-
F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-
F-F++F-F-F-F++F-F-F-F++F-F++
F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-
F-F-F++F-F-F-F++F-F-F-F++F-F
++F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-
F++F-F-F-F++F-F-F-F++F-F-F-F++F
-F++F-F++F-F-F-F++F-F

Chapter 12 Production Systems 5

Let’s take another example, the quadratic Koch island

produced by the following grammar where the rotation angle

is 90 degrees.

Axiom F + F + F + F
Rule F → F + F – F – FF + F + F - F

The axiom describes the square as usual, and the rule is

shown in Fig.12.5. You an easily see the rule in action:

Starting from the bottom, go forward F, then turn right + then

go forward F, then turn left – then left again – then two steps

forward FF then right + then forward F then turn right + then

forward F then turn left – then forward. The number of right

turns (‘+’ = 3) equals the number of left turns (‘-‘ = 3) so we

end up going in the same direction we started. Some theorems

are shown below.

12.3 Extending the Grammar

12.3.1 The ‘do not plot’ symbol ‘X’
Here we introduce a new character in the alphabet, X. The

production system works exactly as before, only the turtle

when it sees an X just ignores it and does not plot anything.

Here’s an example system.

Axiom X
Rule X → F + F + X

To see how this works, let’s generate a few theorems.

Figure 12.5 Quadratic Koch Island.

Nature of Computing 6

Axiom X
Depth 1 F+F+X
Depth 2 F+F+F+F+X
Depth 3 F+F+F+F+F+F+X

This is straightforward, you can see that the rule tells us to

replace all occurrences of X with F+F+X which is exactly

what happens. Also we can give a higher-order

interpretation, we see that the strings grow by F+F on each

production and the string ends with a + then an X at the end.

So the X at the end causes the strings to grow from the end.

You can see this in the theorems turtleized below.

 We can generalize the use of the ‘no-plot’ symbol to

production systems where turtelization is not necessary for a

successful interpretation. Consider the following system.

Alphabet 1
Axiom 11

Rule X → X11

Some of the theorems produced by this system are tabulated

below where we have shown the denary representation.

Clearly this system generates the even numbers.

Axiom 11 2
Depth 1 1111 4
Depth 2 111111 6
Depth 3 11111111 8

Chapter 12 Production Systems 7

You can also see that if we started with the axiom 1, then we

would generate the odd numbers. So we can create any

number!

 Let’s have a look at one more example, the system

described by,

Alphabet 1, +, =
Axiom 1 + 1 = 11
Rule X + Y = Z → X1 + Y = Z1

The rule means, ‘if there is a theorem that consists of some

string X followed by a + followed by a second string Y

followed by an = followed by a third string Z, then we can

create a new theorem by appending 1 to X and a 1 to the Z.

Here’s some theorems generated.

Axiom 1 + 1 = 11
Depth 1 11 + 1 = 111
Depth 2 111 + 1 = 1111
Depth 3 1111 + 1 = 11111

It’s quite easy to see that this system is doing an arithmetic

addition. Now that’s an interesting result, we now know that

production systems can represent numbers and it looks as

though they can be designed to perform arithmetic operations

on those numbers, they can compute!

12.3.2 Systems with Multiple Rules
Production systems may be constructed with more than one

rule. The question then becomes, say we have two rules, then

which one gets executed first? Consider this toy system.

Alphabet A, B
Axiom B
Rule 1 A → AB
Rule 2 B → A

The first rule tells us to replace an A by AB and the second

rule to replace B by A. Again which rule fires first. Well

production systems are special in that both rules fire

Nature of Computing 8

together, so we may simultaneously replace occurrences of

both A and B in a string. Here’s a derivation.

Axiom B
Rule 1 (only possibility) A
Rule 2 (only possibility) AB
Rule 2 on A, Rule 1 on B ABA
Rule 2 on A, Rule 1 on B, rule 2 on A ABAAB

But we have to be careful. Look at the last derivation starting

with the theorem ABA. We replace A with AB, then we move

onto the original B which we replace with A, then we move

onto the final A which we replace with AB. What we don’t

do, is when we replace A with AB, we do not immediately

replace the B with an A. In other words, we process each

string from left to right. Fig.12.6 shows this explicitly where

we traverse a tree, from top to bottom.

12.4 Lindenmayer Systems

12.4.1 Mechanics of the L-Systems
This is a most beautiful application of production systems,

these L-Systems let us grow realistic digital plants, please

look ahead to see some examples of complete plants before

we set down to study some detail. Let’s first see where we are

going, Fig. 12.7 shows the depth-1 and depth-2 of the

theorems our system will generate, you can see the genesis of

a branching structure very suggestive of a plant.

 Before we look at the production system, we need to

understand one concept from computer hardware, the stack.

Stack are implemented in RAM and can contain many values,

but unlike RAM the elements may not be accessed

individually. Instead the stack has a single port of entry and

exit. So store a variable, we push it onto the stack through this

port, and to read a variable, we pop it from the stack. The

diagram below shows the stack in operation. Think of each

row as holding a 32-bit integer.

Fig. 12.6 Tree representation of the AB system.

Fig.12.7 First two theorems of our first L-System

Chapter 12 Production Systems 9

 Initially the stack is empty and there is a pointer (red

arrow) to the bottom of the stack where we save and retrieve

our data values. Let’s say we are writing some assembler

code and we have variables A and B which hold some

number. When we code push A then the value of A is pushed

into the bottom of the stack, then we code push B and the

value of B is pushed into the bottom, and A moves up a slot.

So both A and B are stored safely. Now we wish to get some

data from the stack, so we code pop. Note we cannot ask for

A or B, we get whatever is at the bottom of the stack, at the

stack pointer location. So here we get B from the stack, and

A tumbles down.

 To produce plants we need a push operator, the

character [and the pop operator, the character]. In a well-

formed string we must have equal numbers of pushes and

pops. So let’s see this in action, consider the following

grammar.

Alphabet F, +, [,]
Axiom F
Rule F → F [- F] + F

Let’s apply the rule to the axiom which will generate the

theorem,

F → F [- F] + F

and look at the detailed turtle movements shown in the

diagram below.

Nature of Computing 10

The turtle starts at (a) and the first string character F moves it

forward (b). Then comes a push [so the turtle remembers its

state = location and orientation at (b). Then comes a turn left

– which here is 30 degrees which is (c). Then another F so it

moves forwards to (d). Then we hit a pop] so its pushed state

(b) is restored which is (e). Then it is told to turn right + (f)

and finally to move forward F to bring it to (g) where it is

located with the last rotation intact. So you can see how the

plant shown in Fig.12.7 (depth 1) is produced.

 Now let’s turn to Fig.12.7 (depth 2) and try to

understand how this plant is produced. Hold on to your hat!

Here is the theorem produced at depth 2 where we have color

coded and applied superscripts to the pushes and pops so you

can see how they work. In the case of b and c they are nested.

Please consult the diagram below. We start at 1 and move

forward F to 2. Then we push the turtle state a onto the stack

[𝒂 and then turn left – and move forward F and arrive at 3.

Now we pop the turtle state from the stack]𝒂 and we return

to 2. Next we turn right + and move forward F which brings

us to 4.

 Now we are at 4 and we push the state b onto the stack

[𝒃 turn left – and move forward F which brings us to 5. Now

we do another push [𝑐 (so that we have c at the bottom of the

stack and b above it) and we turn left – and move forward F

so we end up at 6.

Chapter 12 Production Systems 11

 Now we pop c off the stack]𝑐, and so we return to 5.

We then turn right + and move forward F which brings us to

7, so we have completed one of the branches. Next we have

to complete the other branch, so we pop b off the stack]𝑏

which returns us to 4 ready to start the other branch, We turn

right + and move forward F which brings us to 8. Here we

push d onto the stack [𝑑 then turn left - and move forward F

to 9. To draw the remaining stem, we must return to 8, so we

push d off the stack]𝑑 and we turn right + and move forward

F so we arrive at our destination 10.

Note in the above diagram how the pushes and pops are

paired.

12.4.2 An Atlas of Plant Productions.
The diagrams below show plants produced by the following

production system for a range of angles and depths. The

angle controls the lateral spread of the plant, and the depth

controls its ‘bushiness’.

Alphabet F, +, [,]
Axiom F
Rule F → F [+ F] F [- F] [F]

Nature of Computing 12

Chapter 12 Production Systems 13

..Here’s a selection of plants cultured by other systems. Each

plant in the top row is for depth = 3, angle = 30 degrees, and

the bottom row is depth = 4, angle = 30 degrees.

12.5 Designing and Engineering Systems
It is possible to design an L-System to draw a certain type of

shape. To do so, we must try to find some basic atomic rules

for constructing shapes.

Nature of Computing 14

12.5.1 Concatenating Shapes
Let’s say we want to create a chain of identical shapes each

shape is the same an described by a string A. So we will need

to produce theorems A, then AA, then AAA. Let’s make

things a little more complete, and require that each additional

shape is rotated with respect to the prior. So we need a list of

theorems that look like this

A+

A+A+

A+A+A+

You can see that concatenation can be obtained in general by

using the dummy character X

Axiom X
Rule X → A+ X

which will produce the following theorems, which is what we

want.

A+X

A+A+X

A+A+A+X

Take the example with A = F + F – F , this element is shown

in Fig.12.8 together with the depth 3 production. Here is the

system, with A substituted.

Axiom X
Rule X → F + F – F + X

12.5.2 Bicycle Spokes
Now, let’s say we wanted to draw a radial pattern of simple

spokes as shown in Fig.12.9. How would we approach this?

Well when we draw a line using F we need to return to the

starting point. We know how to do that, we just use the push

and pop operators like this [F]. But the next spoke is rotated

Fig.12.8 Left shows shape element, and right shows

concatenation of 3 elements with angle of 30

degrees.

Chapter 12 Production Systems 15

an angle, so we need something like this [F]+. So we need to

create theorems like this

[F]+ First spoke, turn ready for second

[F]+ [F]+ Second spoke, turn ready for third

[F]+ [F]+ [F]+ Third spoke, turn ready for fourth

So we have a concatenation which we already have solved.

The production system therefore becomes,

Axiom X
Rule X → [F] + X

Of course we can replace F in the above rule with A which

describes the above shape element. In that case we get result

in Fig.12.10.

12.5.3 Moving without Drawing: The Cantor Set
The Cantor Set is a very interesting mathematical object. You

can make such a set by drawing a line (depth 0) then erasing

the middle third (depth 1) and continuing to do this

recursively. This is shown in the diagram below.

We introduce a new character f into our alphabet which

means move forward but do not draw, the turtle’s pen is

well and truly raised up. Here is our production system.

Axiom +F
Rule 1 F → F f F
Rule 2 f → f f f

First note the + in the axiom. This is to turn the turtle so it

draws in a horizontal direction. Rule 1 clearly splits a line into

3 line segments, the first and third are drawn, the second is

blank. Why do we need the second rule? This ensures a

constant gap between line segments when they are split.

Fig.12.9 Bicycle spokes for depth of 5.

Fig.12.10 Depth-5 radial arrangement of shape

elements.

Nature of Computing 16

Consider the depth 2 production string F f F f f f F f F, this is

produced and expressed as the following tree. Remember

both rules apply simultaneously. The black lines are drawn

and the grey lines show spaces. This agrees with the depth-2

diagram drawn above.

