Robot Vision 1

Worksheet 14 Harry: Paths

Learning Outcome 4

Book Chapter 1.24 – 1.26

Finite State Machine

Here we shall explore how to get Harry, the Stepper robot, to follow a path made from line segments and junctions. We shall use a finite state machine (FSM) with the following 4 states:

STATE_EXPLORE
STATE_LEFT_TURN
STATE_RIGHT_TURN
STATE_ABOUT_FACE

Two states are shown on the right. In the state EXPORE the robot moves along a line using **moveABit(...)** after getting the error. When it detects a junction (green arrow) then it advances onto the junction. Then it transits to the next state (red arrow) based on the **junctionID** it has found.

The state LEFT_TURN involves a **pivot(...)**, with the appropriate angle, and then the next state will be EXPLORE. The other two states will be similar.

1. Coding the FSM

Base your code on the previous worksheets, you have seen everything you will need (I think). A template is provided in CBP_2403_Junction_React_1.

(a) First code STATE_EXPLORE. You will need to

- get the error,
- then call moveAbit(...)

state = STATE_EXPLORE

- then get the **junctionID**
- if this is a valid junction then
 - o advance Harry onto the junction
 - transit to the next state, **state = ...**

2. Try it out

An example track is available, but you might like to create your own.

Since Harry is a *real* robot, you might experience problems. Most can be solved by tweaking parameters such as the advance distance, the pivot angle, and the error correction gain value.

3. Portfolio Pointers

This is a great activity to put into your portfolio. Photos, and links to movie-clips will be great.

I would encourage you to include a full annotated code listing (the sketch, **not** library functions).

Also include a complete FSM diagram, with states linked by arrows. If I remember, I shall put some graphics on the web pages.