Albus Severus (son of Harry)

Wiring motors to motor shield

e Top left shows how to connect steppers to the motor shield.
e To right shows the stepper plug. Brown wires connected to red wires on harness supplied.

Design and Build the Chassis

e Template QCad file provided AlbusSeverus.dxf
e Has useful plates which fit the stepper motor

e Design rule to obtain exact 90° pivot: 50 * axleLength / wheelRadius is a whole number.
e Need to have space for

o Arduino Uno with motor shield on top

o 6V ‘green’ battery

e Need to have front plate to allow addition of pixyCam, HuskyLens etc. Consult Harry.

Driving the Motors

le (nrSteps < nrStepsRequ) {

t ml = motorl.on tep (FORWARD, INGLE) ;
t m2 = motor2.or t (FORWARD, INGLE) ;

(delayval);

nrSteps++;
}

e While loop increments nrSteps which is the nr steps actually taken.
e Need to pre-compute nrStepsRequ (explained below) and initialize nrSteps.
e delayMicroseconds(...) determines rotational speed of motors.

Some Motor Speeds

delay uSec steps/sec revs/sec mm/sec rev/min
100 10000 50 10367.25576 3000
1000 1000 5 1036.725576 300
10000 100 0.5 103.6725576 30
100000 10 0.05 10.36725576 3
1000000 1 0.005 1.036725576 0.3
5000 200 1 207.3451151 60
4000 250 1.25 259.1813939 75
15000 66.66666667 0.333333 69.11503838 20

Movement in a straight line

e wheelRad = 33;
uble circ = 2*PI*wheelRad;

dx = circ / 200.0; // 200 st per rev for this stepper
le distance = 200; // (mm)
unsigned long nrStepsRequ = (unsigned long) (distance/dx):;

e First need to find dx the distance moved for each step (ask for the theory if you like)
e Then decide on your desired distance.
e Calculate steps required nrStepsRequ and use unsigned long integers.

DO IT : Get Albus Severus to move in a straight line.

e Use the sketch CBP_FBO_Albus_Template.ino
e Before the while loop you must:
o Find the number of steps required
o Set the delayVal for a sensible speed.
e Investigate the largest speed the motors can handle. Ask for the theory how to convert speeds in rmp to
delayVal.

DO IT: Write a function to ramp the speed.

Umax

Vimin

* step number
0 alN N—aN N

e Velocity changes with step number over the total steps required, N.

e Rises for fraction alpha of N and falls over same number of steps.

e Code will look like this. Need to finish the ifs and code vely =

e Function outputs usDelay (microseconds delay) which we need to set the speed.

unsigned long ramp(int vMin, int vMax, unsigned long N, float alpha,
unsigned long n, bool upRamp, bool downRamp) {

float vely;
unsigned long uSDelay;

if((n < alpha*N) && (upRamp == true)) {
vely = ...

}else if ((n < alpha*N) && (upRamp == false)) {
vely = ...

}

if((n >= alpha*N) && (n < (N - alpha*N))) {

}

.. and more ifs

uSDelay = (unsigned long)(60*5000.0/vely);

return uSDelay;

e Diagram below will help with coding the vely = expressions.
e Red arrows are what you put in and get out
e Bysimple trigwe havey=C+x*(D-C) /A

Code for Pivoting

void pivot(float degs, int vMin, int vMax, float dx,
float axleLength, bool upRamp, bool downRamp) {

float theta = (Pl * degs)/180.0;

int dirL;
int dirR;

unsigned long nL,nR;
unsigned long vL,vR;
float sC;

unsigned long delayVal;

if(theta <= 0) {
dirL = FORWARD;
dirR = BACKWARD;
}
else {
dirL = BACKWARD;
dirR = FORWARD;
}

sC = axleLength/2 * theta;
nL = sC/dx;
nR =nL;

inti=0;
while(i <= nL) {
delayVal = ramp(vMin, vMax, nL, 0.25, i, upRamp,
downRamp);

int m1 = motorl.onestep(dirL, SINGLE);
int m2 = motor2.onestep(dirR, SINGLE);
delayMicroseconds(delayVal);

i++;

}

}

e Above code should work (has not been extensively tested)
e Based on the code in the library CBPFBO_StepperA in portable > sketchbook > libraries
e Perhaps see how it has been changed.

Code for Arcing
e Go to the library CBPFBO_StepperA in portable > sketchbook > libraries.
e Find the function for the Arc.
e Copy into a sketch and modify it based on your understanding of how the pivot(...) code was adapted.

