
Albus Severus (son of Harry)

Wiring motors to motor shield

• Top left shows how to connect steppers to the motor shield.

• To right shows the stepper plug. Brown wires connected to red wires on harness supplied.

Design and Build the Chassis

• Template QCad file provided AlbusSeverus.dxf

• Has useful plates which fit the stepper motor

• Design rule to obtain exact 90o pivot: 50 * axleLength / wheelRadius is a whole number.

• Need to have space for

o Arduino Uno with motor shield on top

o 6V ‘green’ battery

• Need to have front plate to allow addition of pixyCam, HuskyLens etc. Consult Harry.

Driving the Motors

• While loop increments nrSteps which is the nr steps actually taken.

• Need to pre-compute nrStepsRequ (explained below) and initialize nrSteps.

• delayMicroseconds(…) determines rotational speed of motors.

Some Motor Speeds

Movement in a straight line

• First need to find dx the distance moved for each step (ask for the theory if you like)

• Then decide on your desired distance.

• Calculate steps required nrStepsRequ and use unsigned long integers.

DO IT : Get Albus Severus to move in a straight line.
• Use the sketch CBP_FBO_Albus_Template.ino

• Before the while loop you must:

o Find the number of steps required

o Set the delayVal for a sensible speed.

• Investigate the largest speed the motors can handle. Ask for the theory how to convert speeds in rmp to

delayVal.

DO IT: Write a function to ramp the speed.

• Velocity changes with step number over the total steps required, N.

• Rises for fraction alpha of N and falls over same number of steps.

• Code will look like this. Need to finish the ifs and code vely =

• Function outputs usDelay (microseconds delay) which we need to set the speed.

unsigned long ramp(int vMin, int vMax, unsigned long N, float alpha,
 unsigned long n, bool upRamp, bool downRamp) {

 float vely;
 unsigned long uSDelay;

 if((n < alpha*N) && (upRamp == true)) {
 vely = …
 } else if ((n < alpha*N) && (upRamp == false)) {
 vely = …
 }

 if((n >= alpha*N) && (n < (N - alpha*N))) {

 }

 .. and more ifs

 uSDelay = (unsigned long)(60*5000.0/vely);

 return uSDelay;

}

• Diagram below will help with coding the vely = expressions.

• Red arrows are what you put in and get out

• By simple trig we have y = C + x * (D – C) / A

Code for Pivoting

void pivot(float degs, int vMin, int vMax, float dx,
 float axleLength, bool upRamp, bool downRamp) {

 float theta = (PI * degs)/180.0;

 int dirL;
 int dirR;

 unsigned long nL,nR;
 unsigned long vL,vR;
 float sC;

 unsigned long delayVal;

 if(theta <= 0) {
 dirL = FORWARD;
 dirR = BACKWARD;
 }
 else {
 dirL = BACKWARD;
 dirR = FORWARD;
 }

 sC = axleLength/2 * theta;
 nL = sC/dx;
 nR = nL;

 int i = 0;
 while(i <= nL) {
 delayVal = ramp(vMin, vMax, nL, 0.25, i, upRamp,
downRamp);

 int m1 = motor1.onestep(dirL, SINGLE);
 int m2 = motor2.onestep(dirR, SINGLE);
 delayMicroseconds(delayVal);

 i++;
 }
}

• Above code should work (has not been extensively tested)

• Based on the code in the library CBPFBO_StepperA in portable > sketchbook > libraries

• Perhaps see how it has been changed.

Code for Arcing
• Go to the library CBPFBO_StepperA in portable > sketchbook > libraries.

• Find the function for the Arc.

• Copy into a sketch and modify it based on your understanding of how the pivot(…) code was adapted.

