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Chapter 6 
Braitenberg Vehicles 

6.1 A brief Introduction 
Valentino Braitenberg was a neuroscientist, a cybernetician and a 

musician. In his book ‘Vehicles: Experiments in Synthetic 

Psychology, he explains how when investigating various structure 

in the animal brain, he realized that these structures could be 

interpreted as “pieces of computing machinery”. He then goes on 

to create a number of vehicles to represent the animals, together 

with simple interconnexions between sensors and motors. Then, to 

describe the behaviour of these vehicles, he uses terms from 

psychology, such as fear, aggression, love. In total he discusses 14 

vehicles, though we shall look only at two or three of these. The 

diagrams in his book show connexions between sensors and motor 

actuators, hooked up using individual discrete units of processing 

reminiscent of neurons. Of course, he was a neuroscientist! The 

history of computation shows developments of models of the brain 

and computing algorithms and structures have moved forward in 

lockstep. There are therefore strong links today between 

computing, neuroanatomy, neurophysiology and psychology. 

We shall take a neural-central approach to discussing these 

vehicles using a novel neural-circuit computing paradigm we have 

invented. Of course, it is possible to use a wholly procedural 

approach to coding these vehicles, and we shall start with this. But 

first, let’s have a look at some of Braitenberg’s vehicles. 

6.2 Some Vehicles 
Let’s start by looking at the structure of vehicle 2 which comes in 

two flavours vehicle 2a and vehicle 2b shown in Fig. 6.1. Each has 

two sensors (eyes) and two actuators (motors). The connexions are 

shown as dotted lines and the ‘+’ symbol indicates that a signal 

coming down that wire from eye to motor has an excitatory effect 

on that motor; the larger the signal the faster the motor moves. Also 

we must understand how the light sensors work; simply the closer 

the sensor to a light, the larger the output signal produced by the 

light. 

Figure 6.1 Vehicles 2a and 2b. 
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So for vehicle 2a, the right eye is closer to the light than the left eye 

so it outputs a  larger signal. The right motor therefore receives a 

larger signal than the left, so the right motor turns faster (since this 

signal is excitatory). This makes the robot veer away from the light 

as shown in the diagram. Braitenberg attributed this vehicle with 

fear. 

It's easy to understand why vehicle 2b veers towards the light; here 

the left eye gets more light and sends out a larger signal, but 

because of the ‘crossed’ connexions, the right motor receives this 

and turns faster than the left motor. Braitenberg called this 

aggression since the vehicle turns towards the light and speeds up, 

since both eyes receive more light as it is approached. Eventually 

the vehicle will collide with the light and abruptly halt as its eyes 

can’t see backwards. 

Let’s have a look at vehicle 3 shown in Fig.6.2. The connexions 

resemble vehicle 2, but the behaviour is totally different. That’s 

because the connexions are inhibitory. What does that mean? Well 

if the signal into a motor is made larger, then the motor rotates 

slower, so the opposite of an excitatory connexion.  

Consider first vehicle 3b. When it approach the light from the left, 

the left eye receives more light and generates a larger output signal 

than the right eye. This is passed to the right motor which slows 

down, since the signal is inhibitory. The diagram shows vehicle 3b 

having progressed beyond the point light, that’s because it has the 

attribute of an explorer, once it has moved to, and beyond, that 

light, then it moves off to find another one (to avoid). Note we are 

assuming that both motors have some drive to keep them moving 

in the absence of any light, this tonic signal must be present if the 

inhibitory connexion can work effectively. 

Now vehicle 3a; as it moves towards the light, the signal from the 

eyes get stronger and so they increasingly inhibit the motors, 

slowing them down. So the vehicle approaches the light, slows 

down and stops. Braitenberg gave the attribute of love to this robot. 

When the vehicle is not head-on (say it’s off to the left) then the 

right eye gets more light and inhibits the right motor more, making 

it slower. So the vehicle turns towards the light. 

 

 

Figure 6.2 Vehicles type 3a and 3b. Note the 

inhibitory connexions. 
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6.3 Procedural coding of Behaviour 
Note this is not our preferred way of doing things, we strongly 

advocate the neural approach, however thinking procedurally will 

get us going, and will provide a platform for comparison. 

We shall assume that we have some code to read the signal from 

the eyes; here is how we would do it using an Arduino, where 

LDR_L and LDR_R are the Arduino pins where the left and right eye 

sensors are connected. 

 
 

We also need some code to drive the motors. This could look like 

this. 

 
 

Now we have to decide how we are going to connect the eyes to 

the motors. First we must realize that we may have signal of 

different sizes; our typical LDR-based eyes have an output in the 

range of 100 (dark) to 620 (light), and our servo-motors require a 

drive in the range of 10 (slow) to 60 (fast). So we have to do some 

mathematical mapping of the sensor values onto the motor values. 

This is illustrated, conceptually in Fig.6.3. There many ways to 

achieve such a mapping; we shall have a look at just two. 

6.3.1 Linear Interpolation 
A linear mapping preserves sizes of intervals of values between the 

two spaces. So if a sensor interval 100 – 200 (size 100) is mapped 

onto an actuator interval of 10 – 20 (size 10), then another sensor 

interval 300 - 400 (size 100)  could map onto the actuator interval 

30 – 40 (size 10). So equal intervals in one space have 

corresponding intervals in the other space which are equal. There 

is no distortion in the mapping, it is linear. 

The technique is shown in Fig.6.4. There’s lots going on here, but 

our goal is to input a sensor reading s and to find the corresponding 

actuator value a. The lower and upper sensor values 𝑠𝐿and 𝑠𝐻 and 

the corresponding actuator values  𝑎𝐿and 𝑎𝐻   are shown; these are 

obtained by experiment. 

Figure 6.3 Mapping from sensor space (range of 

values) to actuator space (different range of 

values) 
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We need to get a mathematical expression for the mapping which 

we can implement in our computer code. Look at Fig.6.4 where 

you will see two similar triangles ABC and ADE. Since these are 

similar, the ratios of their lengths to their heights must be the same, 

so we have, 

𝐵𝐶

𝐴𝐵
=

𝐷𝐸

𝐴𝐷
 

which gives us, 

𝑎 − 𝑎𝐿

𝑠 − 𝑠𝐿
=

𝑎𝐻 − 𝑎𝐿

𝑠𝐻 − 𝑠𝐿
 

which we can solve for a in terms of s, 

𝑎 = 𝑎𝐿 + (𝑠 − 𝑠𝐿)
(𝑎𝐻 − 𝑎𝐿)

(𝑠𝐻 − 𝑠𝐿)
 

Remember all the symbols with subscripts are known values, so 

when we plug in our measured eye signal s out pops the associated 

actuator value a. Here’s some code that does this mapping, where 

we use the word drive for the actuator (motor) drive signal and the 

word eye for the eye sensor value. 

 

 
 

 

6.3.2 Logarithmic Mapping 
We don’t have to use a linear mapping, we can choose any function 

we like depending on our needs, or indeed no function at all, but 

use a load of data points. However one situation we often encounter 

makes use of a logarithmic mapping shown in Fig.6.5. This 

function is a curve which flattens out for high values. Look at the 

two triangles on the figure, they both have the same horizontal 

extent, i.e., same range of sensor values. But the corresponding 

actuator range for the lower sensor values is much larger than the 

range for the higher sensor values. This means that when the light 

is not so bright, the motors respond with a larger speed change then 

when the light is bright. You can see how this could be useful for 

a Braitenberg vehicle; when it is further from the target light, the 

vehicle will turn faster than when it is closer to the light, so it will 

be able to located the target light more easily. 

Figure 6.4 Linear mapping from sensor space 

(horizontal axis) to actuator space (vertical 

axis) 
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The maths to establish this mapping is quite straightforward and is 

presented in the box below. 

Assume the desired function has the following form where A 
and B are two coefficients which we must find 

𝑎 = 𝑓(𝑠) = 𝐴 log(𝑠) + 𝐵 
Inserting lower and upper values, 

𝑓(𝑠𝐿) = 𝑎𝐿 = 𝐴 log(𝑠𝐿) + 𝐵 

𝑓(𝑠𝐻) = 𝑎𝐻 = 𝐴 log(𝑠𝐻) + 𝐵 
Subtract and solve for A 

𝐴 =
𝑎𝐻 − 𝑎𝐿

log(𝑠𝐻) − log(𝑠𝐿)
 

Add and solve for B 

𝐵 =
1

2
[𝑎𝐻−𝑎𝐿−𝐴(log(𝑠𝐻)+log(𝑠𝐿))] 

And that’s how we do that. We can calculate A and B and use 
these in the first expression to obtain our mapping. 

 

Here’s some code to implement the log mapping, 

 

 
 

 

6.3.3 Putting it all together. 
Now we can combine the code snippets from the start of this 

section with an interpolation routine and make the eye-motor 

connexions. Let’s start by looking at the code. Lines 4&5 we read 

the eye signals. Then, lines 7&8 we assign these to intermediate 

variables, the inputs to the interpolators. We connect left to left and 

right to right. So we are coding Vehicle 2a. Then we do the 

interpolations, lines 10&11 and finally use the outputs to drive the 

servos, line 13. 

 

Figure 6.5 Logarithmic mapping which is more 

sensitive at lower light levels. 
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We can show this diagrammatically in Fig.6.6 where the structure 

of both vehicles 2a and 2b are shown. You can see the code 

variables, the yellow blocks are the interpolators and the arrows 

show the data flow for this procedural architecture. 

6.4 Neural Circuits 
Braitenberg clearly had neurons as functional units in mind, so 

that’s what we shall look at here. We take the simplest model of a 

neuron which correctly captures its behaviour; it’s desirable to 

keep things simple since ultimately we shall need to code our 

neuron model on the Arduino which has limited memory resource. 

The model is called the ‘leaky integrator’ model. 

6.4.1 The ‘Leaky Integrator’ model 
A neuron has an input which we can think of as a flow, and it 

accumulates that flow over time, which produces its state variable. 

Let’s take the analogy of water flowing into (and out of) a bucket 

with a leak. The diagram below shows water entering the bucket 

(with the leak plugged) at a constant rate I. 

The height of the water is shown steadily increasing, the height at 

various times is indicated. We can write this mathematically, in 

each time interval ∆𝑡 the height increases by the same amount ∆𝑢 

(we use the symbol u for the neuron state). The speed of height 

change is just 

∆𝑢

∆𝑡
= 𝐼 

Figure 6.6 Connexions for vehicle 2a (top) and 

vehicle 2b (bottom). Yellow blocks are the 

interpolators. 
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Where the left hand side means the increase in height per second, 

and the I on the right is the cause of the height increase, i.e. the 

water flow rate into the bucket. 

Now suppose the bucket is nearly full so we turn off the input, and 

also open the leak so that water flows out, and the height starts to 

decrease. The diagram below details this. 

 

The height falls following an exponential curve, the amount 

leaving reduces with time. This is a pressure effect; at first there is 

a lot of pressure on the water at the bottom (where it is leaving) but 

as the height decreases so does the pressure, and hence the flow 

gets smaller. We can write the change in height as 

∆𝑢

∆𝑡
= −𝑢 

Look at the right hand side, the cause of the change; it is negative 

which means the height is decreasing, and the rate of decrease is 

proportional to u which is the pressure effect. 

Now we can combine the two expressions where water is flowing 

in and leaking out,  

∆𝑢

∆𝑡
= 𝐼 − 𝑢 

Of course, we have not included tons of physics in this model such 

as pipe size, resistance and gravity, but that would muddy the 

water. But there is one complication which we cannot side-step. In 

general the rate of change may depend on u in a more complex 

way, perhaps we need to use 𝑢2 or other more fun dependencies. 

In this case, the model only works where ∆𝑡 becomes very 

(infinitesimally) small. To remind us of this, we replace the symbol 
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∆𝑡 with dt where the little d reminds us that the change is 

infinitesimal. The equation for our leaky integrator neuron is now 

𝑑𝑢

𝑑𝑡
=

1

𝜏
(−𝑢 + 𝐼) 

Here we have snook in a parameter 𝜏 (pronounced ‘tauw’) which 

tells us how fast the neuron responds; a large 𝜏 means the response 

is slow (small pipe diameter) and a small 𝜏 means a fast response 

(large pipe so water flows quickly out). The units of 𝜏 are seconds. 

The graph below shows a solution of the above expression. 

 

Initially the bucket is empty, so it fills up quickly since the rate of 

exit due to the leak is small. As the bucket fills up, the pressure 

increases so the leak flow out gets larger, and after a large time to 

rate of leak equals the rate of input flow, so the height does not 

change. At this point the bucket is in equilibrium so that 

𝑑𝑢

𝑑𝑡
= 0             𝑢 = 𝐼 

In the above example I = 4 so the equilibrium height is u = 4. 

6.4.2 Adding two signals. 
A circuit which can add two signals is shown in Fig.6.7, since there 

are now two inputs, we can extend the above expression, 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1 + 𝐼2) 

At equilibrium the above expression tells us 

𝑢1 = 𝐼1 + 𝐼2 

Figure 6.7Addition of two input signals I1 and 

I2. 

Figure 6.8 Addition of two input signals. 
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Showing that the circuit clearly adds the input signals, an example 

is given in Fig.6.8. 

A circuit to subtract two signals is shown in Fig.6.9. Here one 

signal comes in as an inhibitory input, the larger the input the more 

it reduces the neuron’s state. You could think of this as a little pump 

which is pumping water out of our bucket analogy. The equation 

for this case is  

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1 − 𝐼2) 

with the equilibrium solution 

𝑢1 = 𝐼1 − 𝐼2 

6.4.3 Multiplication by Shunting Inhibition 
Biological neurons achieve multiplication by a slightly different 

method, shown in Fig.6.10. Here the input 𝐼1is fed into the neuron, 

but the second input 𝐼2 acts on the incoming signal 𝐼1 directly 

before it reaches the neuron body. This is called a shunting 

connexion and achieves multiplication by the following 

expression, 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1 ∗ 𝐼2) 

with equilibrium solution 

𝑢1 = 𝐼1 ∗ 𝐼2 

6.4.4 The Sigmoid Output Function 
So far, we have considered how a neuron processes its inputs by 

addition, subtraction or multiplication. Following this processing, 

the neuron passes its value of 𝑢1through an output function, and 

it’s this signal which is then passed on to other neurons. The idea 

is shown in Fig.6.11where the neuron area to the left of the dotted 

line does the processing, and the right area calculates the output 

𝑜𝑖 = 𝑓(𝑢𝑖) 

The most common form of the output function is the sigmoid which 

is defined as follows and drawn in Fig.6.12. 

𝑓(𝑢) =
1

1 + 𝑒−(𝑢−𝐶) 𝐷⁄
 

Figure 6.9 Neural circuit for subtraction . 

Figure 6.10 Neural multiplication by shunting 

inhibition. 

Figure 6.11 Neuron showing inputs which are 

processed followed by the output function. 
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Here A and B are parameters which define the shape of the curve. 

First let’s have a general think about the sigmoid. We have chosen 

a rather large input range of 0.0 – 500.0, and the sigmoid curve 

maps this to an output range of 0.0 – 1.0. In fact, the sigmoid 

created using the above expression will map any input range into 

an output range of 0.0 – 1.0. This is very useful, since it makes 

using the output signal rather easy as we shall see. 

Now we need to understand the effect of the parameters C and D. 

Well, C defines the input value where the output is at its mid-point 

0.5. In Fig.12, we have C = 250 which is half the input range 0 – 

500, so an input of 250 gives an output of 0.5. That’s also useful. 

What about D? Well, this defines the slope or gradient of the curve; 

a small value of D means the curve rises quickly and a larger value 

means it rises slowly. The diagrams below show curves for two 

values of C and D.  

 

6.5 Arduino Neural Circuit Controller 
Let’s consider one vehicle, type 2b. You  will remember that the 

left eye excites the right motor and vice versa to obtain the desired 

behaviour. We can construct a neural circuit using just four 

neurons, two connected to the eyes, and two to drive the motors. 

The circuit is shown in Fig.6.13. 

Figure 6.12 Example of a sigmoid curve 

showing that the output it limited to the range 

0.0 - 1.0. 
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Neurons 𝑢0 and 𝑢1 are driven by signals from the left and right eye 

respectively, they also receive an ‘offset’ O which is the 

background ambient light level. You can see these neurons subtract 

the ambient light level from that of the point source. The red 

squiggles at the outputs of these neurons show that we use a 

sigmoid to generate the outputs. 

The outputs are then fed into motor neurons 𝑢2 and 𝑢3 but before 

these output signals arrive, they are both multiplied by parameter 

D which is the amount of drive we use to drive the motors. Again 

the outputs are passes through sigmoids. 

You will also note that the raw signals from the eyes are passed 

through a function. This converts the electrical signals from the 

LDR sensors into luminance values, so the eye neurons receive 

information about the light levels. 

Now let’s fill in some important details by looking at some snippets 

from the Arduino code. The code is organized in a sequential 

manner, from eyes to motors. The input signals are inL and inR 

and these are passed through an exponential function to generate 

the luminance values, the two constants have been found by a 

separate calibration experiment. 

 
 

Next comes the retinal neural layer. One neuron for each eye 

 
 

You can see that the offsets are subtracted from the luminance 

inputs. The computed values of u[0] and u[1] are then passed 

through sigmoid function, where A = 100 and B = 25. The value of 

A was chosen from a measured maximum u[ ] value of 200. The 

value of B was chosen from experience. The outputs of the 

sigmoids lie in the range 0.0 – 1.0. 

Figure 6.13 Neural circuit for Braitenberg 

vehicle 2b. 
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The outputs from the sigmoids are then passed into the motor 

neurons, 

 
 

 

First you see the incoming values are multiplied by maxDrive 

which is typically set to 60 for the Parallax robot. Then comes 

another sigmoid where C is set to 25 (about half of maxDrive) and 

D is set to around 16. Note that the calculation of the sigmoids has 

maxDrive in the numerator rather than 1.0, in other words the 

outputs of the sigmoids lie in the range 0 – maxDrive which will 

make the robots happy. 

Note that identical code will work with the Webots simulation. 

That’s the beauty of using the C-language! 
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