
Chapter 3 Sensors 1

Chapter 3
Sensors

3.1 A brief Introduction
As humans our bodies are full of sensors, we depend heavily

on sensing the external environment through vision, sound

and touch. These sensors respond to the external environment

and are responsible for giving us information about what is

out there. This could be for navigation through a building,

driving (while avoiding obstacles) reading a menu and

making a choice of food to eat. Sensors which respond to the

external environment are called exteroceptive. We also have

built-in sensors which give us information about our bodies

(and perhaps minds). We can sense when we have a

toothache, when we are hungry, when we are tired or irritable.

Sensors which respond to our internals are called

proprioceptive.

 The same classification is true for a robot, typical

internal variables are battery voltage, motor speed, load on

the wheels. External robot sensors can provide measurements

of distance, sound amplitude and pitch and light intensity.

Speed can be measured by doppler effect (change in pitch

when a sound bounces off a moving object), and computer

Vision can lead to object recognition (and therefore

avoidance), path following and visual ranging. In this chapter

we shall but take a small taste of what is possible and reflect

on what we can achieve in our lab.

3.2 Active Ranging

3.2.1 Ultrasonic Pinging
The operation of the HC-SR04 ultrasonic ping detector is

shown in Fig.3.1. This is somewhat like the principles used

by bats in echo location. A distance measurement cycle

begins by emitting a pulse of 40kHz waves from the

transmitter Tx. This pulse spreads out (with a beam-width of

Figure 3.1 Ultrasonic Ping; green shows emitted

pulse and blue reflected pulse.

about 30 degrees), and if it encounters an obstacle, then it is

reflected and may arrive at the receiver Rx. The device gives

us the time for the round trip which is (using the definition of

velocity = distance over time)

𝑡 =
2𝑑

𝑣

where v is the velocity of sound, around 330 m/s. Note the

factor 2 since the round trip has distance 2d. Fig.3.1 reminds

us that we must output a trigger pulse to and input an echo

pulse from the HC-SR04. Let’s see the details and some code.

 The diagram below shows the sequence of operations.

At time ‘A’ we raise the value of trigger from LOW to HIGH

and hold it there for 10𝜇sec. Then, at time ‘B’ the device

emits 8 ultrasonic pulses with frequency 40 kHz. When this

is complete, the device raises its echo pin (which was LOW)

to HIGH, telling our code the pulse has been emitted, time

‘C’. When the pulse is reflected and enters the receiver, time

‘D’, then the ECHO pin goes low. So, by measuring the time

the echo pin remains high, we know the time it takes for the

pulse to do its round trip.

So, we can invert the above expression and calculate d.

𝑑 =
𝑣𝑡

2

Chapter 3 Sensors 3

The code to do this is straightforward.

digitalWrite(HC_SR04_Tx,LOW);

delayMicroseconds(2);

digitalWrite(HC_SR04_Tx,HIGH);

delayMicroseconds(10);

digitalWrite(HC_SR04_Tx,LOW);

duration = pulseIn(HC_SR04_Rx,HIGH);

mm = 10*duration / 29 / 2;

The last line looks a little odd. This does several things; it

converts duration (measured in microseconds) to seconds,

then it converts the speed of sound 330 m/s to mm/s, and then

it divides by 2 to take account of the round trip. The

calculation has been done using integer arithmetic.

3.2.2 Limitations of Ultrasonic pinging
Think of an object around 2 metres away, this could easily be

a wall in a room the robot must detect. It will take the

ultrasonic pulse around 0.01 seconds (10 ms) to make its

round trip. Our code must wait for this time to get the distance

(unless we use interrupts), even then, the distance information

is taking too long to be computed. A robot equipped with 10

such sensors arranged to measure distances all around its

body must wait 0.1 seconds for this information to be

available and moving at a leisurely speed of 100 mm/s, it

would have travelled 10 mm and maybe suffered a collision.

So, we must turn to faster approaches such as laser pings

(LIDAR) which operate at the speed of light providing a

speedup relative to sound of approximately 3 × 108 3 × 102⁄

which is about a million times.

Figure 3.2 Voltage divider arrangement (resistor

values not specified)

3.3 Line Following

3.3.1 Aside – Resistors and Phototransistors
We have already encountered robot line following in Chapter

2 where we looked at the PID control algorithm. Now we

need to focus on the details of the sensor system, so we can

understand how to code the control algorithm. The following

notes are from the point of view of an electronic engineer, so

we have to get some basics in place, especially resistor

circuits and circuits with a resistor and a phototransistor.

Let’s not worry about the theory, but rather look at some

examples, plus a little dose of logic.

 The starting point is voltage; we know that the

Arduino can output a LOW signal (0 volts) and also a HIGH

signal (5 volts) on a digital output pin. We also know it can

input a signal on a digital input pin, and this can be HIGH (5

volts) or LOW (0 volts). So, voltage seems to be the key in

understanding circuits. Now most input devices can be

thought of as being configured as part of a voltage divider.

This is shown in Fig.3.2 The rectangles are resistors, and

these are connected between 5V and 0V (Gnd). There is an

output voltage, so the question is what can this be? Well it

can’t be more than 5 or less than 0, since these values are not

available at the input, so we conclude that the output voltage

must be in the range 0.0 – 5.0. So, let’s look at some concrete

examples in the diagrams below.

In (a) we two identical resistors, so logic tells us the 5Volts

must be divided into 2, so we get 2.5V out, it can’t be

Chapter 3 Sensors 5

Figure 3.3 Phototransistor with (a) low level of

light input, (b) high level of light input

anything else. In (b) we have a small resistor at the top and a

huge on at the bottom, the voltage out is almost 5V. This

makes sense since the output is ‘more connected’ to the 5V

rail than to the 0V rail (less resistance). Conversely in (c) the

output is ‘more connected’ to the 0V rail, so the output is

close to 0V. Of course, you may have notice that the larger

voltage is found across the larger resistor.

 Now let’s turn to the phototransistor which is used for

most light-sensing activities, such as in our line following

scenario, this is shown in Fig.3.3 where two situations are

shown. On the left (a) there is a low light level applied to the

phototransistor (two green arrows) and in (b) there is a higher

light level (four green arrows). We need to know something

about a phototransistor

A phototransistor is like a resistor whose
resistance changes with its light input:

• Low light level – high resistance

• High light level – low resistance

So, in Fig.3.3(a) the phototransistor has a high resistance, so

following our argument above, the output will be nearer 0V.

In Fig.3.3 (b) with a high light level, the phototransistor has

a lower resistance, so the output is ‘more connected’ to the

5V rail, so the output is close to 5V. In other words, the output

of this circuit can give us a binary value ‘there is light’ (5V)

or ‘there is no light’ (0V).

3.3.2 A Simple Line Detector
Here we shall briefly discuss a simplistic line detector, but

it’s not the one we advise to use, it’s a toy problem just to

reinforce some of the thinking we have presented above, as a

stepping-stone to a more serious line detector. Let’s assume

we have a robot with a left and right sensor as described

above, see Fig. 3.4(a). The robot is following a dark line on a

lighter background. We want to know how the above

Figure 3.4 Simple line detection arrangement

using phototransistors.

phototransistor circuit will give us information to keep the

robot moving along the line.

In Fig.3.4(b) the robot has strayed to the right and must be

instructed to rotate anti-clockwise. Let’s have a look at the

outputs of the L and R phototransistor circuit. The left one is

darker, and therefore outputs a voltage close to 0V, and the

right one is lighter, so outputs a voltage close to 5V. So, the

left-right pair outputs {LOW, HIGH}. In Fig.3.4(c) we have

the converse, the right phototransistor circuit is darker

(outputting close to 0V) and the right one is lighter,

(outputting close to 5V). So, the left-right pair outputs are

{HIGH, LOW}. We can summarize this in the following

table.

Situation Sensors Action

 L R

Fig.4(a) on the line HIGH HIGH continue forward

Fig.4(b) off to the right LOW HIGH rotate anti-clockwise

Fig.4(c) off to the left HIGH LOW rotate clockwise

This looks like potential input for a FSM as discussed in

Chapter 2, providing the transit events between states. But as

we also mentioned, this is a little brutal, and for smoother,

more delicate control, we need a continuous input from our

line sensor. So, let’s see how we can achieve this. But first

we need another step aside.

3.3.3 Aside – Capacitors and Phototransistors.
First let’s turn to a capacitor; think of this like a bucket which

accumulates charge when a current flows into it. When water

flows into a bucket the water height increases and so does the

pressure. When current flows into a capacitor the voltage

(think pressure) similarly increases. Take a look at the

diagram below.

 In (a) the capacitor is empty, there is no charge so

there is no voltage across it. In (b) current has started flowing

into the capacitor, and you can see some charge has

accumulated, so there is a small voltage across the capacitor.

Chapter 3 Sensors 7

As the current continues to flow so does the charge

accumulate (c and d) and the voltage rises. You can see that

voltage is proportional to charge.

 So, here’s the circuit for our delicate line detector with

an explanation of how it works. The blue arrow line is a

connexion to an Arduino input/output. In (a) this is

configured as an output and is given a HIGH level. Therefore,

there is no voltage across and capacitor which therefore does

not hold any charge.

In (b) we see a time series of what happens when we remove

the Arduino input, then the capacitor is free to charge, and as

it charges, its voltage increases. So, the voltage across the

phototransistor must decrease (since the voltage across both

must always be 5V). Finally (rightmost circuit) there is 0V

across the phototransistor.

Figure 3.5 Oscilloscope traces of sensor

response: Top dark surface, bottom light surface

How does this help us create a delicate sensor to detect lines?

Well, remember that the resistance of a phototransistor

depends on the amount of light falling on it, more light means

less resistance. So, in the above circuit, when the

phototransistor gets a lot of light, its resistance is small, so it

the current into the capacitor is larger, it charges up faster,

and so its voltage rises faster. Therefore, the voltage across

the resistor drops faster. This is the voltage we measure, and

we measure the time it takes to drop to near 0V. A smaller

time means more light, so the sensor is looking at white; a

larger time means less light, so the sensor is looking at black.

 Fig.3.5 shows some actual measurements I made on

the circuit. You are looking at oscilloscope traces of the

voltage across the phototransistor (vertical axis) against time

(horizontal axis). The top photo shows what happens when

you present a dark surface to the sensor and the bottom shows

a light surface. The times to go from 5V to 0V are about

dark surface 3 µsec

light surface 0.5 µsec

3.3.4 Coding all this Natural Nonsense
This all may seem complicated, perhaps you feel you have

had a journey from Siberia to Nepal (via Hereford). So, let’s

look at some code, which may bring thinking together.

long RCTime(int sensorIn){

 long duration = 0;

 pinMode(sensorIn, OUTPUT);

 digitalWrite(sensorIn, HIGH);

 delay(1);

 pinMode(sensorIn, INPUT);

 digitalWrite(sensorIn, LOW);

 while(digitalRead(sensorIn)){

 duration++;

 }

 return duration;

}

Chapter 3 Sensors 9

We’re looking at a function which returns the time duration

for the circuit to respond to the light presented to the sensor.

This code does the following

• Set the Arduino pin to output and set it HIGH. This

discharges the capacitor.

• Wait 1ms to ensure the capacitor has had time to

discharge.

• Set the Arduino pin to input and write a LOW to

configure its internal operation.

• The while loop monitors the input voltage to the pin

and loops until this is zero. During the loop, it

increments the time duration variable.

• Finally, the function returns the value of duration.

In summary, our delicate sensor gives us a broad and

continuous range of values from light (around 50) to dark

(around 1000). This is an enormously useful range of values

which we can easily use to compute the robot’s error from the

centre of a dark (or light) line.

Typical code to get the values from a left and right sensor and

to compute some measure of error looks like this

senseL = RCTime(5);

senseR = RCTime(4);

error=((float)senseL-(float)senseR)/

((float)senseL + (float)senseR);

Note that senseL and senseR are long variable types and that

these have been cast explicitly to floats. This is best

programming practice. You may ask why the difference

between the sensor reading is divided by their sum. Well, this

is the expression

𝑒𝑟𝑟𝑜𝑟 =
(𝑠𝑒𝑛𝑠𝑒𝐿−𝑠𝑒𝑛𝑠𝑒𝐿)

(𝑠𝑒𝑛𝑠𝑒𝐿+𝑠𝑒𝑛𝑠𝑒𝐿)

If the sensor values are the same (or close) this evaluates to

close to zero. If one sensor value is large and the other is small

then e.g., (1000 – 10)/(1000 + 10) = 0.98 which is less than

1. So this expression will produce error values in the range

0.0 – 1.0. This value is ‘normalized’ and it is very very useful

to know it is in this range.

