
Chapter 2 Robot Control Architectures 1

Chapter 2
Robot Control Architectures

2.1 A brief Introduction
Robots are quite complex beasts; they are a mixture of

mechanical systems, sensors, computational processes and

user interfaces. Moreover, robots live in a real physical (and

not simulated) world, full of uncertainties and this world may

change, e.g., as humans or other robots invade their space. So,

you will not be surprised that the design of control systems or

architectures can be quite involved. In this chapter we shall

take a limited approach to explore architectures which you

may experience on this module; we shall look at Finite State

Machines, control algorithms for line following and wall-

hugging (the so-called ‘Bug’ algorithm), and Rod Brookes

‘subsumption’ architecture. There are broadly speaking two

approaches to robot control; the first is the deliberative

paradigm and the second is the reactive paradigm.

 The deliberative paradigm, which we won’t be using,

is shown in the diagram below. The robot must have an

internal model of the world.

First the world is sensed, and then the internal model of the

world is updated and a plan is generated. This stage is

computationally heavy since it involves automated reasoning

based on the internal model and sensing. Finally the robot

acts. There are some problems with this model, first how to

model everything the robot must know, while preventing the

knowledge representation from becoming too complex. More

importantly is the fact that sensing and acting are

disconnected, the robot is unable to react to events such as

Figure 2.1 Finite State Machine for a vending

machine

imminent collisions. In the reactive paradigm, sensing and

acting are closely coupled, so the robot can react to events.

There is no planning and no world model, the robot uses the

various behaviours, (move forward, turn, move back) and

changes between behaviours based on the sensory input. This

of course assumes that we can find meaningful ‘primitive’

behaviours on which the robot’s actions can be based. Also,

we need some sort of architecture to switch between these

behaviours, and that’s the focus of this chapter.

2.2 Finite State Machines
Here the behaviours of a robot are associated with ‘states’ in

a finite state machine (FSM). An example of a FSM is shown

in Fig.2.1 for a hypothetical drink vending machine; here

drinks cost 30p and the machine accepts 10p and 20p coins.

 The state names have been chosen to tell you how

much money has been entered when the machine is in that

state, so S20 means that in that state 20p has been entered.

You start at the top in state S00 where nothing has been

entered, then entering 10p will take you to state S10, or

entering 20p will put you into state S20. The yellow

highlights are transitions between states. There are three

routes to get to the end state S30, entering 3 x 10p, or one 10p

then one 20p or one 20p then one 10p. You can appreciate

that this state transition diagram fully captures the state of

the vending machine at each moment.

 An alternative representation of a FSM is a table,

which for Fig.1 looks like this. It shows the current state, the

event triggering the transition and the new state

Current State Event Next State

S00 +10 S10

S00 +20 S20

S10 +10 S20

S10 +20 S30

S20 +10 S30

Chapter 2 Robot Control Architectures 3

Figure 2.2 FSM for Obstacle Avoidance

2.3 FSM for Robot Obstacle Avoidance
Have a look at the state diagram in Fig.2.2 Each state is

labelled with a useful name. The line with the blob, top left,

shows the starting state. Within the body of each state are the

actions taken within that state. So for STATE_FWD where

the robot is told to move forward, the values of driveL and

driveR are set and then these values are sent to the servos.

The bottom box of each state shows the exit condition, i.e.,

what causes the FSM to transit out of STATE_FWD. We look

at the distance to the obstacle, when this is below a threshold

we transit to STATE_BACK.

 In the STATE_BACK, the drives are set and sent to

the servo. After a time delay which we set then we make a

transition to STATE_TURN. This state also drives the servos

and exits after a timeout, and then transits to the first state

STATE_FWD. Coding this FSM is straightforward. First, we

define the states

#define STATE_FORWARD 1

#define STATE_BACKWARD 2

#define STATE_TURN_LEFT 3

These statements are used in the pre-compilation stage where

any text STATE_FORWARD in your code is replaced by the

value 1. Then the body of the FSM, which goes inside the

Arduino’s loop(){ } block looks like this, for the first state

switch(state) {

 case STATE_FORWARD :

 driveL = 30;

 driveR = 30;

 driveServos(driveL,driveR);

 dist = getDistance();

 delay(60);

 if ((dist < 300) && (dist != -1)) {

 state = STATE_BACKWARD;

 }

 break;

You can see the lines to set driveL and driveR, to drive the

servos, to get the distance, and the exit condition inside the

Figure 2.3 Cute 2-wheeled differential-drive robot

with 2 downward facing light sensors.

if() statement. Note that a dist value of -1 means that the

sensor has malfunctioned. The remaining states are

 case STATE_BACKWARD :

 driveL = -30;

 driveR = -30;

 driveServos(driveL,driveR);

 delay(3000);

 state = STATE_TURN_LEFT;

 break;

 case STATE_TURN_LEFT :

 driveL = 30;

 driveR = -30;

 driveServos(driveL,driveR);

 delay(3000);

 state = STATE_FORWARD;

 break;

This FSM is straightforward and does its job as you will see.

Let’s briefly look at another FSM, this time to keep a robot

travelling along a line. The robot is our usual 2-wheeled

differential drive critter, with two downward facing light

sensors, see Fig.2.3; each sensor reports either 1 “I can see

the line” or 0, “I can’t see the line. So, we have a 2-bit binary

system with 4 possible states:

Sensors State

Left Right

0 0 I’m confused

0 1 I need to turn clockwise

1 0 I need to turn anti-clockwise

1 1 I’m on the line

Have a look at the diagram below, where you can easily see

all four states. From the above table and diagram, it’s easy to

code up a FSM which will do the job.

Chapter 2 Robot Control Architectures 5

Figure 2.4 Configuration of a delicate line-

follower

2.4 PID Controllers
Robots are often required to follow a line, e.g., in warehouse

picking operations, or in auto-drive cars, or perhaps they need

to navigate around obstacles using a ‘wall-hugging’

algorithm. We have just discussed how to create a controller

using a FSM, and while this may work in many situations, it

is actually a little crude. The reason is the motors will be

driven with certain values of drive, but these are fixed such as

{driveL = 0, driveR = 40} to get the robot to rotate anti-

clockwise. We need a more delicate approach, where the

further the robot if off the line, the more difference in drive

we send to the motors. To do this we can use a PID

(‘Proportional, Integral, Derivative) controller.

 Before we do that, let’s look at a rudimentary (but

acceptable) solution the problem; the configuration is shown

in Fig.2.4, the robot has to get to the centre of the yellow line

(on the red dashes) and the centre of its body is shown by the

blue line fixed to its body. So here it is perfect. Now let’s see

when things go wrong. In the diagram below on the left, the

robot is too far to the right. The error is the distance between

the centre of the robot and the centre of the line (red dots).

The sensor system will give us this error difference which we

can use to correct the robot position by setting the motor

drives. In the right part of the diagram the robot is still too far

to the right, but not as much and the error is less. So, it makes

sense to make the motor drives proportional to the errors,

more error, more correction, and this is correct.

So how would we go about coding this behaviour? Here’s

how.

driveR = 20 + 10*error;

driveL = 20 – 10*error;

driveServos(driveL,driveR);

Here the ‘20’ part of the drive, applied to both motors keeps

the robot moving in a forward direction. We add an amount

10*error to the right motor to speed it up and subtract the

same from the left motor to slow it down. So, the robot will

turn anti-clockwise which is what we want. But the main

point is, the larger the error, the more we add and subtract, to

get the robot turning. This will work, but not always.

 Where has the magic number ‘10’ come from? To

understand this, think what would happen if we replaced ‘10’

by ‘1’? Well, the error would have only 1/10th the effect, so

the correction would not be as strong. So, the correction is

proportional to this magic number 10. So let’s replace this

magic number by a coefficient Kp which stands for

‘proportional coefficient’. We have just discovered the

‘proportional’ bit of the PID controller!

driveR = 20 + Kp*error;

driveL = 20 – Kp*error;

driveServos(driveL,driveR);

Chapter 2 Robot Control Architectures 7

Figure 2.5 Response of robot to a disturbance

with three values of Kp

Figure 2.6 The structure of the PID controller;

from top to bottom, P, I then D

Figure 2.7 PID controller with two values of

Kd

2.4.1 Why the Proportional Controller may fail
Here we shall start the development of the PID theory. Let’s

consider a toy problem where the robot has to move so that

its lateral position is 1mm from the centre of the line. Let’s

try a few values of Kp to see how it fairs. Have a look at

Fig.2.5 where the robot starts off at 0 mm and we drive it

using the proportional error towards the 1 mm position (up

the side of the graph). This is a graph of robot position against

time, and we want the position to become 1.0, near the top of

the graph. Horror! None of the values of Kp actually work!

Also, for larger values of Kp the robot starts to oscillate! This

is certainly not desirable. This is where PID control steps in.

2.4.2 Structure of the PID Controller.
This is shown in Fig.2.6 which shows the error signal 𝑒(𝑡)
coming in at the left and the computed drive exiting at the

right to drive out motors. The three boxes in the middle make

different computations on the error signal, and these are

summed (the Σ symbol) which form the final drive. We know

how to calculate the proportional component. The integral

component sums all the errors over time (this will include

negative error values, so the sum will not simply increase).

The derivative component takes the difference between

current and previous errors. It turns out, applying some

theory, that such an arrangement can provide good control of

most systems, such as robots, self-driving cars, constant

temperature heating systems, hard disk drive head

positioning; you get the idea.

 So, let’s see what the new components do, first the

derivative. Let’s stick with Kp = 50 (see Fig.2.5 where we

had the horrible overshoot and oscillations) and look at two

values of Kd; Kd = 0 and Kd = 10. You can see the results in

Fig.2.7. With Kd = 0, we have oscillations and overshoot, but

with Kd = 10, the oscillations are damped out, so the position

rises smoothly towards the desired position 1.0, but still

doesn’t get there. That’s the job of Ki as we shall now see.

Have a glance at Fig.2.8 where the previous curve for Kp=50,

Kd=10 (and assumed Kp=0) is drawn again, and the robot

does not move to 1.0 mm but only manages a little over 0.8

mm. However, with Ki = 45 the results are much better, the

robot is clearly moving towards the goal of 1.0mm.

 So, in summary here is what the three coefficients do.

𝐾𝑝 proportional Makes robot move to goal.
Too large a value gives
overshoot and oscillation.
Goal is not achieved.

𝐾𝑑 derivative Overshoot and oscillation
removed. Goal still not
achieved

𝐾𝑖 integral Enables goal to be
achieved.

2.4.3 Location of the Controller in the ‘Loop’
Let’s put all of this together and see where the robot fits in.

Have a look at the diagram below which shows a general

control loop which, as we have hinted above, can be applied

to various devices, the ‘plant’, which is here our robot. At the

left is the set point, in our example the desired robot position.

At the right, a sensor monitors the actual robot position and

sends this back to the start of the loop. Here the difference

between desired and actual position is calculated to give the

error signal which is then input into the controller.

Figure 2.8 Effect of the coefficient Ki

Chapter 2 Robot Control Architectures 9

The PID controller does its job as described above and inputs

a drive signal to the robot’s motors making it to move towards

the desired location.

 While the structure of the PID controller will be the

same for all robots, the coefficients will depend on the

particular robot in question. Let’s finally think about this.

2.4.4 ‘Tuning’ the controller
This refers to finding the values of 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖. This is

usually done experimentally and is something of a black art

which is learned by experience. The usual approach is as

follows.

Stage 1. Set all coefficients to 0

Stage 2. Increase 𝐾𝑝 until the robot shows signs of

overshoot or oscillation

Stage 3. Increase 𝐾𝑑 until the oscillation disappears

Stage 4. Increase 𝐾𝑖 until the robot achieves the
desired position. This may mean reducing
𝐾𝑝 and perhaps 𝐾𝑖.

