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Chapter 2 
Robot Control Architectures 

2.1 A brief Introduction 
Robots are quite complex beasts; they are a mixture of 

mechanical systems, sensors, computational processes and 

user interfaces. Moreover, robots live in a real physical (and 

not simulated) world, full of uncertainties and this world may 

change, e.g., as humans or other robots invade their space. So, 

you will not be surprised that the design of control systems or 

architectures can be quite involved. In this chapter we shall 

take a limited approach to explore architectures which you 

may experience on this module; we shall look at Finite State 

Machines, control algorithms for line following and wall-

hugging (the so-called ‘Bug’ algorithm), and Rod Brookes 

‘subsumption’ architecture. There are broadly speaking two 

approaches to robot control; the first is the deliberative 

paradigm and the second is the reactive paradigm.  

 The deliberative paradigm, which we won’t be using, 

is shown in the diagram below. The robot must have an 

internal model of the world. 

 

 

 

First the world is sensed, and then the internal model of the 

world is updated and a plan is generated. This stage is 

computationally heavy since it involves automated reasoning 

based on the internal model and sensing. Finally the robot 

acts. There are some problems with this model, first how to 

model everything the robot must know, while preventing the 

knowledge representation from becoming too complex. More 

importantly is the fact that sensing and acting are 

disconnected, the robot is unable to react to events such as 



Figure 2.1 Finite State Machine for a vending 

machine 

imminent collisions. In the reactive paradigm, sensing and 

acting are closely coupled, so the robot can react to events. 

There is no planning and no world model, the robot uses the 

various behaviours, (move forward, turn, move back) and 

changes between behaviours based on the sensory input. This 

of course assumes that we can find meaningful ‘primitive’ 

behaviours on which the robot’s actions can be based. Also, 

we need some sort of architecture to switch between these 

behaviours, and that’s the focus of this chapter. 

2.2 Finite State Machines 
Here the behaviours of a robot are associated with ‘states’ in 

a finite state machine (FSM). An example of a FSM is shown 

in Fig.2.1 for a hypothetical drink vending machine; here 

drinks cost 30p and the machine accepts 10p and 20p coins. 

 The state names have been chosen to tell you how 

much money has been entered when the machine is in that 

state, so S20 means that in that state 20p has been entered. 

You start at the top in state S00 where nothing has been 

entered, then entering 10p will take you to state S10, or 

entering 20p will put you into state S20. The yellow 

highlights are transitions between states. There are three 

routes to get to the end state S30, entering 3 x 10p, or one 10p 

then one 20p or one 20p then one 10p. You can appreciate 

that this state transition diagram fully captures the state of 

the vending machine at each moment. 

 An alternative representation of a FSM is a table, 

which for Fig.1 looks like this. It shows the current state, the 

event triggering the transition and the new state 

Current State Event Next State 

S00 +10 S10 

S00 +20 S20 

S10 +10 S20 

S10 +20 S30 

S20 +10 S30 
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Figure 2.2 FSM for Obstacle Avoidance 

2.3 FSM for Robot Obstacle Avoidance 
Have a look at the state diagram in Fig.2.2 Each state is 

labelled with a useful name. The line with the blob, top left, 

shows the starting state. Within the body of each state are the 

actions taken within that state. So for STATE_FWD where 

the robot is told to move forward, the values of driveL and 

driveR are set and then these values are sent to the servos. 

The bottom box of each state shows the exit condition, i.e., 

what causes the FSM to transit out of STATE_FWD. We look 

at the distance to the obstacle, when this is below a threshold 

we transit to STATE_BACK. 

 In the STATE_BACK, the drives are set and sent to 

the servo. After a time delay which we set then we make a 

transition to STATE_TURN. This state also drives the servos 

and exits after a timeout, and then transits to the first state 

STATE_FWD. Coding this FSM is straightforward. First, we 

define the states 

#define STATE_FORWARD 1 

#define STATE_BACKWARD 2 

#define STATE_TURN_LEFT 3 

 

These statements are used in the pre-compilation stage where 

any text STATE_FORWARD in your code is replaced by the 

value 1. Then the body of the FSM, which goes inside the 

Arduino’s loop(){  } block looks like this, for the first state 

 

switch(state) { 

    case STATE_FORWARD : 

      driveL = 30; 

      driveR = 30; 

      driveServos(driveL,driveR); 

      dist = getDistance(); 

      delay(60); 

      if ( (dist < 300) && (dist != -1) ) { 

        state = STATE_BACKWARD; 

      } 

      break; 

 

You can see the lines to set driveL and driveR, to drive the 

servos, to get the distance, and the exit condition inside the 



Figure 2.3 Cute 2-wheeled differential-drive robot 

with 2 downward facing light sensors. 

if( ) statement. Note that a dist value of -1 means that the 

sensor has malfunctioned. The remaining states are 

     

    case STATE_BACKWARD : 

      driveL = -30; 

      driveR = -30; 

      driveServos(driveL,driveR); 

      delay(3000); 

      state = STATE_TURN_LEFT; 

      break; 

 

    case STATE_TURN_LEFT : 

      driveL = 30; 

      driveR = -30; 

      driveServos(driveL,driveR); 

      delay(3000); 

      state = STATE_FORWARD; 

      break; 

 

 

This FSM is straightforward and does its job as you will see. 

Let’s briefly look at another FSM, this time to keep a robot 

travelling along a line. The robot is our usual 2-wheeled 

differential drive critter, with two downward facing light 

sensors, see Fig.2.3; each sensor reports either 1 “I can see 

the line” or 0, “I can’t see the line. So, we have a 2-bit binary 

system with 4 possible states: 

Sensors State 

Left Right 

0 0 I’m confused 

0 1 I need to turn clockwise 

1 0 I need to turn anti-clockwise 

1 1 I’m on the line 

 

Have a look at the diagram below, where you can easily see 

all four states. From the above table and diagram, it’s easy to 

code up a FSM which will do the job. 

 

  



Chapter 2 Robot Control Architectures      5  
 

Figure 2.4 Configuration of a delicate line-

follower 

 

2.4 PID Controllers 
Robots are often required to follow a line, e.g., in warehouse 

picking operations, or in auto-drive cars, or perhaps they need 

to navigate around obstacles using a ‘wall-hugging’ 

algorithm. We have just discussed how to create a controller 

using a FSM, and while this may work in many situations, it 

is actually a little crude. The reason is the motors will be 

driven with certain values of drive, but these are fixed such as 

{driveL = 0, driveR = 40} to get the robot to rotate anti-

clockwise. We need a more delicate approach, where the 

further the robot if off the line, the more difference in drive 

we send to the motors. To do this we can use a PID 

(‘Proportional, Integral, Derivative) controller. 

 Before we do that, let’s look at a rudimentary (but 

acceptable) solution the problem; the configuration is shown 

in Fig.2.4, the robot has to get to the centre of the yellow line 

(on the red dashes) and the centre of its body is shown by the 

blue line fixed to its body. So here it is perfect. Now let’s see 

when things go wrong. In the diagram below on the left, the 

robot is too far to the right. The error is the distance between 

the centre of the robot and the centre of the line (red dots). 

The sensor system will give us this error difference which we 

can use to correct the robot position by setting the motor 

drives. In the right part of the diagram the robot is still too far 

to the right, but not as much and the error is less. So, it makes 

sense to make the motor drives proportional to the errors, 

more error, more correction, and this is correct. 

 



 

 

 

 

 

 

 

 

So how would we go about coding this behaviour? Here’s 

how. 

driveR = 20 + 10*error; 

driveL = 20 – 10*error; 

driveServos(driveL,driveR); 

 
Here the ‘20’ part of the drive, applied to both motors keeps 

the robot moving in a forward direction. We add an amount 

10*error to the right motor to speed it up and subtract the 

same from the left motor to slow it down. So, the robot will 

turn anti-clockwise which is what we want. But the main 

point is, the larger the error, the more we add and subtract, to 

get the robot turning. This will work, but not always. 

 Where has the magic number ‘10’ come from? To 

understand this, think what would happen if we replaced ‘10’ 

by ‘1’? Well, the error would have only 1/10th the effect, so 

the correction would not be as strong. So, the correction is 

proportional to this magic number 10. So let’s replace this 

magic number by a coefficient Kp which stands for 

‘proportional coefficient’. We have just discovered the 

‘proportional’ bit of the PID controller! 

driveR = 20 + Kp*error; 

driveL = 20 – Kp*error; 

driveServos(driveL,driveR); 
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Figure 2.5 Response of robot to a disturbance 

with three values of Kp 

Figure 2.6 The structure of the PID controller; 

from top to bottom, P, I then D 

Figure 2.7 PID controller with two values of 

Kd 

2.4.1 Why the Proportional Controller may fail 
Here we shall start the development of the PID theory. Let’s 

consider a toy problem where the robot has to move so that 

its lateral position is 1mm from the centre of the line. Let’s 

try a few values of Kp to see how it fairs. Have a look at 

Fig.2.5 where the robot starts off at 0 mm and we drive it 

using the proportional error towards the 1 mm position (up 

the side of the graph). This is a graph of robot position against 

time, and we want the position to become 1.0, near the top of 

the graph. Horror! None of the values of Kp actually work! 

Also, for larger values of Kp the robot starts to oscillate! This 

is certainly not desirable. This is where PID control steps in. 

2.4.2 Structure of the PID Controller. 
This is shown in Fig.2.6 which shows the error signal 𝑒(𝑡) 
coming in at the left and the computed drive exiting at the 

right to drive out motors. The three boxes in the middle make 

different computations on the error signal, and these are 

summed (the Σ symbol) which form the final drive. We know 

how to calculate the proportional component. The integral 

component sums all the errors over time (this will include 

negative error values, so the sum will not simply increase). 

The derivative component takes the difference between 

current and previous errors. It turns out, applying some 

theory, that such an arrangement can provide good control of 

most systems, such as robots, self-driving cars, constant 

temperature heating systems, hard disk drive head 

positioning; you get the idea. 

 So, let’s see what the new components do, first the 

derivative. Let’s stick with Kp = 50 (see Fig.2.5 where we 

had the horrible overshoot and oscillations) and look at two 

values of Kd; Kd = 0 and Kd = 10. You can see the results in 

Fig.2.7. With Kd = 0, we have oscillations and overshoot, but 

with Kd = 10, the oscillations are damped out, so the position 

rises smoothly towards the desired position 1.0, but still 

doesn’t get there. That’s the job of Ki as we shall now see. 

 



Have a glance at Fig.2.8 where the previous curve for Kp=50, 

Kd=10 (and assumed Kp=0) is drawn again, and the robot 

does not move to 1.0 mm but only manages a little over 0.8 

mm. However, with Ki = 45 the results are much better, the 

robot is clearly moving towards the goal of 1.0mm. 

 So, in summary here is what the three coefficients do. 

𝐾𝑝 proportional Makes robot move to goal. 
Too large a value gives 
overshoot and oscillation. 
Goal is not achieved. 

𝐾𝑑 derivative Overshoot and oscillation 
removed. Goal still not 
achieved 

𝐾𝑖 integral Enables goal to be 
achieved. 

 

2.4.3 Location of the Controller in the ‘Loop’ 
Let’s put all of this together and see where the robot fits in. 

Have a look at the diagram below which shows a general 

control loop which, as we have hinted above, can be applied 

to various devices, the ‘plant’, which is here our robot. At the 

left is the set point, in our example the desired robot position. 

At the right, a sensor monitors the actual robot position and 

sends this back to the start of the loop. Here the difference 

between desired and actual position is calculated to give the 

error signal which is then input into the controller. 

 

 

 

 

 

 

 

Figure 2.8 Effect of the coefficient Ki 
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The PID controller does its job as described above and inputs 

a drive signal to the robot’s motors making it to move towards 

the desired location. 

 While the structure of the PID controller will be the 

same for all robots, the coefficients will depend on the 

particular robot in question. Let’s finally think about this. 

2.4.4 ‘Tuning’ the controller 
This refers to finding the values of 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖. This is 

usually done experimentally and is something of a black art 

which is learned by experience. The usual approach is as 

follows. 

Stage 1. Set all coefficients to 0 

Stage 2. Increase 𝐾𝑝 until the robot shows signs of 

overshoot or oscillation 

Stage 3. Increase 𝐾𝑑 until the oscillation disappears 

Stage 4. Increase 𝐾𝑖 until the robot achieves the 
desired position. This may mean reducing 
𝐾𝑝  and perhaps 𝐾𝑖. 

 

 


