
Comp3402 Synthesizing and Simulating CPU2S
C.B.Price January 2023

Purpose To apply our understanding of digital circuit synthesis using VHDL to a synthesis of our own
CPU

Files Required Summary of VHDL syntax you need can be found here.
ILO Contribution LO 5
Send to Me nix
Homework Read chapter 14

Section A. Synthesizing and Simulating the CPU2S Components

For each of the following components you will

• Complete the component VHDL code template.

• Check your component code using the testbench provided.

Please note, words in bold are the names of signals in each Component.

How to select the correct testbench. Open up Simulation Sources and you’ll get a list like this,

Say you want to use mux_tb. Right click this line and then choose from the dialogue box.

1.

The MUX

[HINT] The code in chapter 13 page 6 will help here.
See also Chapter 14.6.4

The MUX output op should be inA when sel is high
otherwise, it should be inB.

Note: You can’t use a conventional if-then-else construct since we are not in a process block.

2.

Registers

[HINT] The code in chapter 13 page 11 will help here.
See also Chapter 14.6.1.

The Register data_out should be data_in if:
 (i) there is a rising clk edge and if
 (ii) load is high,

3.

Input Port

[HINT] The code in chapter 13 page 6 will help here.
See also Chapter 14.6.5.

The Port output data_out should be data_in when load is high.
In all other cases it should be low.

Here we introduce some new syntax. Here it is abstractly.

out <= in when (condition)
 else (others => ‘0’)

4.

The ALU

[HINT] The code in chapter 13 page 6 will help here.
See also Chapter 14.6.2.

Here we need a chain of ‘when-else’s We can’t use a conventional if-then-else construct since we are not in a
process block.

Here’s a table of what the op will be according to the sel_ALUf signal which directs the ALU what to do:

sel_ALUf = op

“001” inB

“010” inB + 1

“011” inA + inB

“100” inA - inB

after your final else you should probably include the following to catch any user programming errors:

else (others => ‘0’);

5.

Memory – RAM

This needs thought, concentration, a southerly wind, and faith.
[HINT1] The code in chapter 13 page 14 will help, but this is certainly not the whole story.
See also Chapter 14.6.3.

The solution is best expressed through this flow diagram,

Section B. Programming our CPU2S

This will use the NoC_CPU2S file where all the individual components have been assembled and connected. You will

only need to change the compRAM component.

1.

A First Program

Let’s investigate a program to input a number (could come from switches), then add a number from memory,
then output the number (could go to LEDs). Here’s the program

IN 8000 Input into ACC

ADD 11 2011 Add data from memory address 11 (hex) to the ACC

OUT 9000 Send data from ACC to the output port

HLT 7000 Halt processing.

The left shows the mnemonics, the right shows the opcodes you must type into RAM code-segment. Open the
ISE_RAM.vhd design source, and you’ll see the code-segment

(a) Replace the first 4 rows with the opcodes for the program. Do not add or delete rows.

You can find the data segment further down; it looks like this.

So your instruction ADD 11 will get the data at address 11 (hex) which is 17 (dec). That’s the “0003” on line 45.

(b) Synthesize your design.

(c) Run the testbench NoC_CPU2S_tb_mini and you’ll get a waveform. Your job is to interpret this. Remember
the program does an input into ACC, then adds a number to ACC then outputs the ACC to the output port.

Here’s some basic checks

(i) Check the instruction pointer IP increments 0, 1, 2, 3, …
(ii) Check when each instruction is loaded into the instruction register IR
(iii) Check when the state is EXEC (state = 1)

Now let’s follow the data. You could refer to clock cycles – perhaps add numbers to your snip.

(iv) Find out when the input data appears on inPort and when it changes
(v) Find out when the data is outputted from the input port – oeInPort (high or low ?)
(vi) Find out when this data appears in the accumulator ACC. You should revisit how the ACC works (it’s a
register) Chapter 14.6.1
(vii) Check that the addition has been done correctly
(iix) Find out when the sum appears in the accumulator ACC
(ix) Find out when the data appears at the output port, see Chapter 14.6.6
(x) Check that the mio signal is correct

2.

Optional Programs

Here’s the full instruction set. The ‘aa’ in the opcode column is an address in hex.

LDA addr 00aa load ACC with data from memory at address aa(hex)

STO addr 10aa Store ACC into memory at address aa

IN 8000 Input into ACC

ADD addr 20aa Add data from memory address 11 (hex) to the ACC

OUT 9000 Send data from ACC to the output port

JMP addr 40aa Set IP to code segment address aa (i.e. jump execution there)

HLT 7000 Halt processing.

You might want to investigate the following and work out what they do. Note Program 1 does not halt!

Program 1

IN

ADD 19 (hex)

JMP 1

Program 2

LDA 10

ADD 11

STO 12

OUT

HLT

