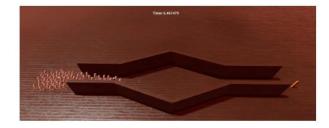
Social Force Model Mini-Project Brief

CBP 10-02-23.

Aims and Objectives


To create various arrangements of targets, obstacles and walls and investigate pedestrian behaviour. For example you could investigate the evacuation of pedestrians from an enclosure – how does the time for evacuation depend on things like – pedestrian desired velocity, the size of the exit(s), obstacles in the enclosure. Here's more ideas.

Some Ideas

- Investigate the effect of parameters (for a single map).
 - o For pedestrian interaction with obstacles, investigate the parameters **A** and **B**.
 - o Same for pedestrian-pedestrian interactions.
 - o Walls have their own parameters A and B. What is the effect of changing these?
- Investigate various layouts of targets, obstacles, walls and pedestrians.
 - Pedestrians moving through a gap in a wall.
 - o Or moving through several gaps.
 - o Pedestrians moving through a 'field' of obstacles.
 - Regular arrangement of obstacles.
 - Irregular arrangement.
- Investigate the effect of the number of pedestrians. This can be applied to any scenario. There are a couple
 of interesting questions here.
 - o Is there any fundamentally different behaviour when the number of pedestrians increases?
 - o Can my Unreal code cope with a huge number of pedestrians? In other words, Does it Scale?
- Try to replicate some results from the literature (see below)

Background – Investigations from the Literature

- Faster pedestrian speeds often mean a longer evacuation time.
- Obstacle in front of an exit can improve evacuation time.
- Widening of a corridor increases evacuation time.

Collisions between crowds

