Harry Mini-Project Brief

CBP 31-01-23. Here's a suggested workflow

Moving along a straight line

- Sketch 3402_D_Straight_Line.ino
- variable $\mathbf{d x}$ (library) is the distance a wheel moves in mm for one step
- variable desiredDist how far you want the robot to move inmm
- function setSpeeds(...) is found in CBPFBO_StepperAX.h
- function stepMotors(...) is also found there
- The while loop to take steps, each iteration take 1 step for left \& right
- Try it out for a couple of desired distances

Moving along an arc

- Sketch 3402_D_Arc
- The 'algorithm' is discussed at this link https://colinprice.wbs.uni.worc.ac.uk/Courses 2021 22/Comp2403/CBP Notes Book/Ch1 Kinematics Stepper Motors.pdf
- You specify the radius of your arc and its angle in degrees
- Complete and test the sketch. Try various arcs

Pivoting

- Sketch 3402_D_Pivot
- You specify the angle in degrees you wish Harry to pivot
- Try various angles

Get to follow a planned path

- Sketch 3402_D_Paths
- Shows how to connect a line and an arc
- Now create an interesting path.

Line Following

- Sketch 3402_Husky_LineFollower
- Looks at the origin of the vector Huskylens finds on the line
- Error calculated using half the sensor/screen widh
- Error normalised to 1
- Error passed to library function moveABit(...) in the library CBPFBP_StepperA

Junction Detection

- Sketch 3402_D_Husky_JuncDetect
- See what this does and see what you can make of it.

How to Navigate a Path

Here's one way - following lines and pivoting.

Another way would be to get Huskylens to read bar-codes placed where you want it to move. The red squares in the fulfilment centre shown below are bar-codes

