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Chapter 16 
Systolic Arrays 

16.1 A brief Introduction 
The CPU architecture you have encountered so far consists 

of a single processing element ‘PE’ (think ‘core’) with nearby 

code and data memory. All instructions from a running 

program are fetched from code memory and execute on the 

single PE. Sure, some CPU chips are multi-core, but this 

architecture remains invisible to the programmer who just 

sees his procedural code running on a single CPU. 

 Systolic arrays offer a completely different 

architecture and programming paradigm. Perhaps the 

simplest is shown in Fig.1. There is a chain of processing 

elements (PEs) each of which is able to run a different 

program. Data enters at the top, passes down the chain and 

exits at the bottom. Think production line where each stage 

adds its own parts. Each PE will start its processing when data 

arrives at its input, so we have an asynchronous system. 

The name ‘systolic’ is inspired by the human heart 

‘systole’ where the heart contracts and pumps blood through 

our pipeline. 

This chapter explores a particular systolic array 

implemented on a chain  or ring of Arduinos to solve the 

problem of how to implement a segmented robot. You have 

already seen our model of a Hexapod (Chapter 9), here we 

extend some ideas presented there to a robot comprising N 

segments. 

16.2 Topologies, Applications and Properties  
What are the possible topologies of a systolic array? Well, the 

PEs can be viewed as nodes in a network, so systolic array 

topologies will closely resemble network topologies. Some 

examples are shown in Fig.2. There is (i) the linear topology 

Figure 1A simple linear systolic array 
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which can be enhanced by a tail-to-head connexion to form 

(ii) a ring. Then there is a 2D interconnexion matrix (iii) and 

even a binary tree (iv). I guess you can work out what other 

topologies are possible. 

 Some important applications run efficiently on 

systolic arrays. Many image processing applications involve 

convolution with a smoothing or edge-detection kernel. 

These are repetitive and can be easily spread over a load of 

PEs which run identical code. Digital signal processing also 

involves similar operations, these are very important 

applications of computing. Matrix operations (such as 3D 

transformations in video games) can also be mapped onto 

systolic arrays. But there are some issues, notably the 

integration with conventional processing architectures, where 

data bandwidth may be a problem; systolic arrays expect data 

to arrive and leave with extremely high rates. Also, there is 

the issue of developing algorithms which is different from the 

conventional procedural paradigm. This is usually done 

manually and requires considerable effort. 

 However, we have identified one class of interesting 

computations which can be easily mapped onto a systolic 

array, indeed the systolic array is the ‘obvious’ solution to 

this class. That’s the case of segmented robots. 

16.3 Systolic Array Communication 
There are various ways of getting Arduino’s to talk to each 

other, Bluetooth could be a good choice, however BLE-

enabled Arduinos can be relatively expensive, so are not best 

suited for an N-segment robot. We must turn to other 

solutions, and even become creative. 

16.3.1 I2C bus communication 
This is a 2-wire serial bus originally designed for 

communication between integrated circuits. One wire SCL 

carries a clock signal, and the second SDA carries the data. 

Each device on the bus has a unique address, and at any one 

time only one device transmits data to another, this is often 

Figure 2 Some Systolic Array topologies. From the 

top (i) line (ii) ring (iii) 2D array, (iv) Binary tree. 
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referred to as a ‘master-slave’ architecture. In our case of the 

segmented robot, each segment has its own Arduino PE and 

a unique address.  

 The code for each segment is organized around a 

Finite State Machine (FSM) which coordinates all aspects of 

both communication and computation. The code for each PE 

has the structure shown in Fig.3. The three states are 

Compute, Transmit and Receive. In Compute we solve some 

maths equations (discussed later), in Transmit we send the 

result across the I2C bus to the next PE, which is in the state 

Receive, ready to grab the data. In this state, the PE actually 

gets the data using the Receive Event call-back function 

which is part of the I2C-Wire protocol.  

 When the chain is initialized, all segments start in 

state Receive, except the Head which is in Compute, to get 

the processing chain started. This is indicated by the green 

line in Fig.3. When the computation is complete, then we 

enter state Transmit and send the result to the Next PE, and 

then we transit to state Receive where we sit quietly until 

another PE sends a message to us and wakes us up. Then we 

return to state Compute. 

 The TAIL segment is a little unique since it transmits 

to the HEAD when ready. The purpose of this is simply to get 

the Head to transit between Receive to Compute, to get the 

next wave of processing started. 

 We can more usefully show the PE states and 

intercommunication as a ‘timing diagram’ as we saw for the 

Vivado testbench waveforms when we were synthesizing 

digital circuits. The diagram below shows the building blocks 

of such a timing diagram.  

Figure 3 The PE state machine. 
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PE1 starts in state Compute, and when this is 

compete, it transits to state Tx (transmit). The top line shows 

the I2C bus, and you can see that PE1 first sends the address 

of PE2 (where it wants to send its payload) then it sends the 

payload data. Meanwhile PE2 is in state Rx (receive) so it is 

able to gobble up the incoming data. It then transits into its 

Compute state, where it processes this data, and in turn 

transits to state Tx where it sends the data to the next PE. 

Now let’s consider the specific architecture of three 

PEs arranged in a loop (so the third feeds back into the first). 

In this case, the timing diagram will look like this, where I2C 

addresses are shown as yellow, and data as blue. PE1 starts in 

state Compute and PE2 and 3 in state Rx (you probably got 

the idea that state Rx is a waiting state where the PE just 

hangs around). When PE1 has finished computing, it asserts 

PE2 as its address and puts its data onto the I2C bus. PE1 then 

reverts to state Rx. Meanwhile PE2 transits to state Compute 

and it does its processing. When complete, it asserts PE3 as 

its address and puts its data onto the I2C bus which is received 

by PE2 which has so far been in the waiting state Rx. Then 

PE2 reverts to state Rx and waits for further incoming. At the 

same time PE3 starts its processing and when complete, 

asserts PE1 as its address and puts its data onto the I2C bus. 

It will go into state Rx and then the cycle will start again with 

PE1 transiting into state Compute. 

 Looking at the above timing diagram, you might 

conclude that this computing approach is incredibly 

inefficient, and you would be right since it appears that the 

PEs spend most of their time in state Rx, waiting, listening 
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for incoming data. This is a direct consequence of using the 

I2C bus where only one PE may put a data packet on the bus 

at any time.  

16.3.2 Analogue Voltage Communication 
Arduinos have analogue-to-digital (A-to-D) convertors 

which can measure an input voltage and convert this to a 

digital value, so we use this as the input to a PE. 

Unfortunately, they don’t all have digital-to-analogue (D-to-

A) convertors on board, but we can add such a chip. The D-

to-A convertor converts the digital result of the PE 

computation to an analogue voltage, which is the output of 

the PE. The idea shown in Fig.4. Each PE receives input data 

as an analogue signal on a single wire (red). The Arduino A-

to-D convertor digitizes this and feeds it into the Compute 

part of the PE. The output of Compute is then converted to an 

analogue signal via the D-to-A convertor, which is output to 

the following PE. 

 So our exemplar chain of three PEs when connected 

in this manner looks like the circuit shown in Fig.5. Note 

there is no need to feedback from the last PE to the first since 

the analogue signal changes in real time, and there is no need 

to send back a synchronization signal as in the case of I2C 

communication. This is an important point, using analogue 

voltage communication we can obtain (almost) real-time 

processing since there are no communication delays. This 

model is closer to actual biological segmented systems such 

as snakes and fish, both have inspired segmented robots, 

16.3.3 Pulse Length Communication 
It is straightforward to program the Arduino to produce 

pulses of definite time duration on an output pin, and also to 

measure the duration of pulses arriving at an Arduino input 

pin. We can use this to communicate data if we convert the 

value of a data variable to the length of a pulse, so that the 

pulse-length is proportional to the value. So a PE will emit a 

pulse of this length, and the receiving PE measures the length 

of the incoming pulse and can recover the value of the data 

Figure 4 Analogue PE communication. Red shows 

analogue data on a single PE-PE wire. 

Figure 5 Chain of three PEs coupled using analogue 

voltages. 
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variable. Our chain of three segments now appears as shown 

in Fig.6 where, again, we need just a single wire for 

communication. 

 Producing pulses is straightforward, we just use some 

code like this on the sending PE. 

 

duration = 100 + 100*var; 
 
digitalWrite(8, LOW); 
delayMicroseconds(100); 
digitalWrite(8, HIGH); 
delayMicroseconds(duration); 
digitalWrite(8, LOW); 
delayMicroseconds(100); 
 

 

Measuring pulse length on the receiving PE needs a little 

more thought. A simple solution is to use the Arduino pulseIn 

function which returns the duration of an input pulse in 

microseconds. 

 

duration = pulseIn(7, HIGH); 
inputVal = ((float)duration - 100.0)/100.0; 
 

 

Note that the functions which translate between data value 

and pulse lengths are inverse. While the use of pulseIn(…) 

does work it does have a flaw, it is a blocking function which 

means that it does not return until it is complete. This gives 

an issue when a PE needs to receive two pulse inputs (e.g., 

from its neighbours) simultaneously. In this case we must use 

interrupts. 

 

 

 

Figure 6 Segments coupled using digital pulse 

length. 
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16.4.Bi-directional communication 
Some applications of systolic arrays require segments to 

communicate with both their anterior (upwind) segment and 

their posterior (downwind) segment. This is possible using 

both the analogue and pulse length communication protocol 

as shown below. I2C bidirectional communication is difficult 

since only one segment can write to the bus at any one time. 

The diagram below shows you the idea. As mentioned above, 

if we choose pulse-length communication, we cannot use 

pulseIn(…). We shall discuss this later in the Lamprey 

section (16.7). 

 

16.5 An Arduino Multi-Segmented Robot 
Here we shall discuss a multi-segmented robot consisting of 

a Head and N-segments that follow. We shall use the neural 

circuit model introduced in Chapter 9. 

The figure below shows a chain of 5 PEs, each is an Arduino 

Nano device with the Head and Tail segments labelled. 

Processing starts at the head and when complete, data is sent 

down the array where it is processed by each PE. This chain 

is actually a ring since the Tail communicates with the Head. 
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Connexions for both I2C and pulse length communication 

protocols are implemented. Pulse length uses digital pins 8 

(output) and 7 (input). The I2C uses analogue pins A4 (SDA) 

and A5 (SCL). The SCL signal is a serial clock and SDA is 

serial data. The values of one data variable on each PE is 

indicated by the brightness of a LED which is controlled by 

pulse-width modulation. 

 

 The neural circuit we use has two different types of 

PE. The Head comprises an oscillator (as in Chapter 9) and 

each body segment consists of a phase-delay neural circuit. 

The theory behind this is discussed in Chapter 9, here we shall 

focus on the code implementation. The head oscillator is 

formed by two neurons, it’s a Hopf oscillator shown in Fig.7 

 

The dynamics of this oscillator is expressed as a pair of  

ordinary differential equations coded like this which 

corresponds to the circuit shown in Fig.7. 

 

 
 

The output from the Head PE is just u[0]. The remaining body 

segment PEs are phase delays, each PE containing 3 neurons. 

 

To obtain the phase delays in the PEs of the remaining 

segments we need a chain of three neurons, since a single 

neuron can produce just under 90 degrees of shift, and we 

may need much more. The code to obtain this is shown below 

where the constants k and tau are determined by the actual 

phase shift, we require. 

 
 

The input to the neurons is shown, the output comes from 

neuron u[2]. If you look at the code in detail, you will see 

Figure 7 Neural circuit for the robot head. Full 

circles are excitatory connections, empty circle is 

inhibitory. Note the symmetry of this circuit. 

Figure 8 Three neurons forming a phase-delay PE. 
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that, with the exception of the Head, the output u[2] passes 

through a tanh(…) function, Fig.9. This friendly function 

ensures that the output  is always in the range -1 to +1 for any 

input. Knowing the range is useful when we may pass the 

signal on for further processing, e.g., to drive a motor. 

To get an idea of the behaviour of our Arduino 

systolic array, we can ‘cheat’ and solve the problem using 

Octave. The plots below show the behaviour for three 

segments (one head and two body segments) where the phase 

shift has been set to 60-degrees. 

 
 

There’s lots of information in these plots. First, we can see 

periodic behaviour, thanks to the Head oscillator (blue line). 

Then the periodic behaviour passes to the first body PE (red 

line) and then to the second (orange line). You can see a clear 

phase difference between the PEs, and if you look carefully 

at the plot, you will convince yourself this is 60 degrees. 

 Note also that all signals are in the desired range of -

1.0 to +1.0 as discussed above. Finally you will note that it 

takes around 5 second for the circuit to settle into a periodic 

behaviour; this is called a ‘transient’.  

 On the actual Arduino PE’s this behaviour can be seen 

through the brightness of the LEDs which is proportional to 

the PE signal. This is done through standard pulse-width 

modulation. 

Figure 9 Tanh function. 
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16.6 The Lamprey Model. 
The Lamprey is a primitive vertebrate which, without any 

fins, swims with a snake-like motion by deforming its body 

in a very special way. There is a propagating wave of 

movement down the backbone segments. This critter has 

been the subject of a lot of mathematical modelling and 

analysis, computer simulation and has been used as 

inspiration for the development of swimming robots. 

 Here we discuss the ‘standard’ neural circuit model 

for the lamprey shown below where we have drawn just three 

neurons (PEs) out of a chain on N PEs. 

 
Consider the middle (i’th) PE. We can see that it is connected 

to its anterior PE (i-1) and also to its posterior PE (i+1), this 

means the Head is at the left and the Tail is at the right. The 

state variable of each PE is the angle 𝜃 which is called its 

‘phase’. The phase of each segment increases linearly with 

time, and is described by the ordinary differential equation 

(ODE) 

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖            (1) 

where 𝜔𝑖 is the frequency of oscillation of segment PI-i. What 

does this mean? Well interpreting 𝜃 as an angle, when this 

increases linearly and reaches 2𝜋 rads (or 360 degs), then it 

‘wraps around’ and becomes zero again, and then starts to 

rise, a bit like this. 

 

Figure 9 Screen capture images of a swimming sea 

lamprey [Photo attribute request] 
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Now we need to turn to the coupling between the PEs, as 

mentioned above we need to couple to both the anterior and 

posterior PEs For sound theoretical reasons we choose to 

model the coupling as a function of the phase difference 

between neighbouring segments, i.e., (𝜃𝑖−1 − 𝜃𝑖) for PE-i 

and its anterior. We choose this function to be periodic and in 

particular a sine function. The coupling terms therefore look 

like this. 

𝑎𝑈 sin(𝜃𝑖+1 − 𝜃𝑖)               (2a)  

𝑎𝐷 sin(𝜃𝑖−1 − 𝜃𝑖)              (2𝑏) 

Here (2a) refers to the coupling with the posterior PE (the 

literature refers to this as ‘upward’), here 𝑎𝑈 is the coupling 

strength, and (2a) refers to coupling with the anterior PE. 

 Now we combine eqs (1) and (2) and build up the 

ODEs for our PE chain. 

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 + 𝑎𝐷 sin(𝜃𝑖−1 − 𝜃𝑖) + 𝑎𝑈 sin(𝜃𝑖+1 − 𝜃𝑖)   (3)  

with special cases for the Head, 

𝑑𝜃1

𝑑𝑡
= 𝜔1 + 𝑎𝑈 sin(𝜃2 − 𝜃1)   

and for the Tail 

𝑑𝜃𝑁

𝑑𝑡
= 𝜔𝑁 + 𝑎𝐷 sin(𝜃𝑁−1 − 𝜃𝑁)   

It’s quite straightforward to convert these equations into code 

which runs on the Arduino, for the Head, Body and Tail we 

have, respectively 

dudt[0] = omegaHead + au*sin(inputPost - u[0]); 
 

    dudt[0] = omegaSegm + ad*sin( inputAnt - u[0] )  
                                             + au*sin( inputPost - u[0] ); 
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dudt[0] = omegaTail + ad*sin (inputAnt - u[0]); 
 

You will at once notice a fundamental difference between the 

model expressed in the ODEs (3) and the above code. The 

ODEs refer to subscripted state variables 𝜃𝑖, while each PE 

has one ODE u[0] and inputs. Let’s redraw the above 

structure diagram from the point of view of coding. 

Here the circles (neurons) are incarnated as an individual 

Arduino on a PE, and the connexion arrows are live electronic 

signals. 

 So you see the lamprey model requires bi-directional 

communication which can be coded using either pulse-length 

or analogue voltage approaches. 

 

 

 


