
Chapter 16 Systolic Arrays 1

Chapter 16
Systolic Arrays

16.1 A brief Introduction
The CPU architecture you have encountered so far consists

of a single processing element ‘PE’ (think ‘core’) with nearby

code and data memory. All instructions from a running

program are fetched from code memory and execute on the

single PE. Sure, some CPU chips are multi-core, but this

architecture remains invisible to the programmer who just

sees his procedural code running on a single CPU.

 Systolic arrays offer a completely different

architecture and programming paradigm. Perhaps the

simplest is shown in Fig.1. There is a chain of processing

elements (PEs) each of which is able to run a different

program. Data enters at the top, passes down the chain and

exits at the bottom. Think production line where each stage

adds its own parts. Each PE will start its processing when data

arrives at its input, so we have an asynchronous system.

The name ‘systolic’ is inspired by the human heart

‘systole’ where the heart contracts and pumps blood through

our pipeline.

This chapter explores a particular systolic array

implemented on a chain or ring of Arduinos to solve the

problem of how to implement a segmented robot. You have

already seen our model of a Hexapod (Chapter 9), here we

extend some ideas presented there to a robot comprising N

segments.

16.2 Topologies, Applications and Properties
What are the possible topologies of a systolic array? Well, the

PEs can be viewed as nodes in a network, so systolic array

topologies will closely resemble network topologies. Some

examples are shown in Fig.2. There is (i) the linear topology

Figure 1A simple linear systolic array

Nature of Computing 2

which can be enhanced by a tail-to-head connexion to form

(ii) a ring. Then there is a 2D interconnexion matrix (iii) and

even a binary tree (iv). I guess you can work out what other

topologies are possible.

 Some important applications run efficiently on

systolic arrays. Many image processing applications involve

convolution with a smoothing or edge-detection kernel.

These are repetitive and can be easily spread over a load of

PEs which run identical code. Digital signal processing also

involves similar operations, these are very important

applications of computing. Matrix operations (such as 3D

transformations in video games) can also be mapped onto

systolic arrays. But there are some issues, notably the

integration with conventional processing architectures, where

data bandwidth may be a problem; systolic arrays expect data

to arrive and leave with extremely high rates. Also, there is

the issue of developing algorithms which is different from the

conventional procedural paradigm. This is usually done

manually and requires considerable effort.

 However, we have identified one class of interesting

computations which can be easily mapped onto a systolic

array, indeed the systolic array is the ‘obvious’ solution to

this class. That’s the case of segmented robots.

16.3 Systolic Array Communication
There are various ways of getting Arduino’s to talk to each

other, Bluetooth could be a good choice, however BLE-

enabled Arduinos can be relatively expensive, so are not best

suited for an N-segment robot. We must turn to other

solutions, and even become creative.

16.3.1 I2C bus communication
This is a 2-wire serial bus originally designed for

communication between integrated circuits. One wire SCL

carries a clock signal, and the second SDA carries the data.

Each device on the bus has a unique address, and at any one

time only one device transmits data to another, this is often

Figure 2 Some Systolic Array topologies. From the

top (i) line (ii) ring (iii) 2D array, (iv) Binary tree.

Chapter 16 Systolic Arrays 3

referred to as a ‘master-slave’ architecture. In our case of the

segmented robot, each segment has its own Arduino PE and

a unique address.

 The code for each segment is organized around a

Finite State Machine (FSM) which coordinates all aspects of

both communication and computation. The code for each PE

has the structure shown in Fig.3. The three states are

Compute, Transmit and Receive. In Compute we solve some

maths equations (discussed later), in Transmit we send the

result across the I2C bus to the next PE, which is in the state

Receive, ready to grab the data. In this state, the PE actually

gets the data using the Receive Event call-back function

which is part of the I2C-Wire protocol.

 When the chain is initialized, all segments start in

state Receive, except the Head which is in Compute, to get

the processing chain started. This is indicated by the green

line in Fig.3. When the computation is complete, then we

enter state Transmit and send the result to the Next PE, and

then we transit to state Receive where we sit quietly until

another PE sends a message to us and wakes us up. Then we

return to state Compute.

 The TAIL segment is a little unique since it transmits

to the HEAD when ready. The purpose of this is simply to get

the Head to transit between Receive to Compute, to get the

next wave of processing started.

 We can more usefully show the PE states and

intercommunication as a ‘timing diagram’ as we saw for the

Vivado testbench waveforms when we were synthesizing

digital circuits. The diagram below shows the building blocks

of such a timing diagram.

Figure 3 The PE state machine.

Nature of Computing 4

PE1 starts in state Compute, and when this is

compete, it transits to state Tx (transmit). The top line shows

the I2C bus, and you can see that PE1 first sends the address

of PE2 (where it wants to send its payload) then it sends the

payload data. Meanwhile PE2 is in state Rx (receive) so it is

able to gobble up the incoming data. It then transits into its

Compute state, where it processes this data, and in turn

transits to state Tx where it sends the data to the next PE.

Now let’s consider the specific architecture of three

PEs arranged in a loop (so the third feeds back into the first).

In this case, the timing diagram will look like this, where I2C

addresses are shown as yellow, and data as blue. PE1 starts in

state Compute and PE2 and 3 in state Rx (you probably got

the idea that state Rx is a waiting state where the PE just

hangs around). When PE1 has finished computing, it asserts

PE2 as its address and puts its data onto the I2C bus. PE1 then

reverts to state Rx. Meanwhile PE2 transits to state Compute

and it does its processing. When complete, it asserts PE3 as

its address and puts its data onto the I2C bus which is received

by PE2 which has so far been in the waiting state Rx. Then

PE2 reverts to state Rx and waits for further incoming. At the

same time PE3 starts its processing and when complete,

asserts PE1 as its address and puts its data onto the I2C bus.

It will go into state Rx and then the cycle will start again with

PE1 transiting into state Compute.

 Looking at the above timing diagram, you might

conclude that this computing approach is incredibly

inefficient, and you would be right since it appears that the

PEs spend most of their time in state Rx, waiting, listening

Chapter 16 Systolic Arrays 5

for incoming data. This is a direct consequence of using the

I2C bus where only one PE may put a data packet on the bus

at any time.

16.3.2 Analogue Voltage Communication
Arduinos have analogue-to-digital (A-to-D) convertors

which can measure an input voltage and convert this to a

digital value, so we use this as the input to a PE.

Unfortunately, they don’t all have digital-to-analogue (D-to-

A) convertors on board, but we can add such a chip. The D-

to-A convertor converts the digital result of the PE

computation to an analogue voltage, which is the output of

the PE. The idea shown in Fig.4. Each PE receives input data

as an analogue signal on a single wire (red). The Arduino A-

to-D convertor digitizes this and feeds it into the Compute

part of the PE. The output of Compute is then converted to an

analogue signal via the D-to-A convertor, which is output to

the following PE.

 So our exemplar chain of three PEs when connected

in this manner looks like the circuit shown in Fig.5. Note

there is no need to feedback from the last PE to the first since

the analogue signal changes in real time, and there is no need

to send back a synchronization signal as in the case of I2C

communication. This is an important point, using analogue

voltage communication we can obtain (almost) real-time

processing since there are no communication delays. This

model is closer to actual biological segmented systems such

as snakes and fish, both have inspired segmented robots,

16.3.3 Pulse Length Communication
It is straightforward to program the Arduino to produce

pulses of definite time duration on an output pin, and also to

measure the duration of pulses arriving at an Arduino input

pin. We can use this to communicate data if we convert the

value of a data variable to the length of a pulse, so that the

pulse-length is proportional to the value. So a PE will emit a

pulse of this length, and the receiving PE measures the length

of the incoming pulse and can recover the value of the data

Figure 4 Analogue PE communication. Red shows

analogue data on a single PE-PE wire.

Figure 5 Chain of three PEs coupled using analogue

voltages.

Nature of Computing 6

variable. Our chain of three segments now appears as shown

in Fig.6 where, again, we need just a single wire for

communication.

 Producing pulses is straightforward, we just use some

code like this on the sending PE.

duration = 100 + 100*var;

digitalWrite(8, LOW);
delayMicroseconds(100);
digitalWrite(8, HIGH);
delayMicroseconds(duration);
digitalWrite(8, LOW);
delayMicroseconds(100);

Measuring pulse length on the receiving PE needs a little

more thought. A simple solution is to use the Arduino pulseIn

function which returns the duration of an input pulse in

microseconds.

duration = pulseIn(7, HIGH);
inputVal = ((float)duration - 100.0)/100.0;

Note that the functions which translate between data value

and pulse lengths are inverse. While the use of pulseIn(…)

does work it does have a flaw, it is a blocking function which

means that it does not return until it is complete. This gives

an issue when a PE needs to receive two pulse inputs (e.g.,

from its neighbours) simultaneously. In this case we must use

interrupts.

Figure 6 Segments coupled using digital pulse

length.

Chapter 16 Systolic Arrays 7

16.4.Bi-directional communication
Some applications of systolic arrays require segments to

communicate with both their anterior (upwind) segment and

their posterior (downwind) segment. This is possible using

both the analogue and pulse length communication protocol

as shown below. I2C bidirectional communication is difficult

since only one segment can write to the bus at any one time.

The diagram below shows you the idea. As mentioned above,

if we choose pulse-length communication, we cannot use

pulseIn(…). We shall discuss this later in the Lamprey

section (16.7).

16.5 An Arduino Multi-Segmented Robot
Here we shall discuss a multi-segmented robot consisting of

a Head and N-segments that follow. We shall use the neural

circuit model introduced in Chapter 9.

The figure below shows a chain of 5 PEs, each is an Arduino

Nano device with the Head and Tail segments labelled.

Processing starts at the head and when complete, data is sent

down the array where it is processed by each PE. This chain

is actually a ring since the Tail communicates with the Head.

Nature of Computing 8

Connexions for both I2C and pulse length communication

protocols are implemented. Pulse length uses digital pins 8

(output) and 7 (input). The I2C uses analogue pins A4 (SDA)

and A5 (SCL). The SCL signal is a serial clock and SDA is

serial data. The values of one data variable on each PE is

indicated by the brightness of a LED which is controlled by

pulse-width modulation.

 The neural circuit we use has two different types of

PE. The Head comprises an oscillator (as in Chapter 9) and

each body segment consists of a phase-delay neural circuit.

The theory behind this is discussed in Chapter 9, here we shall

focus on the code implementation. The head oscillator is

formed by two neurons, it’s a Hopf oscillator shown in Fig.7

The dynamics of this oscillator is expressed as a pair of

ordinary differential equations coded like this which

corresponds to the circuit shown in Fig.7.

The output from the Head PE is just u[0]. The remaining body

segment PEs are phase delays, each PE containing 3 neurons.

To obtain the phase delays in the PEs of the remaining

segments we need a chain of three neurons, since a single

neuron can produce just under 90 degrees of shift, and we

may need much more. The code to obtain this is shown below

where the constants k and tau are determined by the actual

phase shift, we require.

The input to the neurons is shown, the output comes from

neuron u[2]. If you look at the code in detail, you will see

Figure 7 Neural circuit for the robot head. Full

circles are excitatory connections, empty circle is

inhibitory. Note the symmetry of this circuit.

Figure 8 Three neurons forming a phase-delay PE.

Chapter 16 Systolic Arrays 9

that, with the exception of the Head, the output u[2] passes

through a tanh(…) function, Fig.9. This friendly function

ensures that the output is always in the range -1 to +1 for any

input. Knowing the range is useful when we may pass the

signal on for further processing, e.g., to drive a motor.

To get an idea of the behaviour of our Arduino

systolic array, we can ‘cheat’ and solve the problem using

Octave. The plots below show the behaviour for three

segments (one head and two body segments) where the phase

shift has been set to 60-degrees.

There’s lots of information in these plots. First, we can see

periodic behaviour, thanks to the Head oscillator (blue line).

Then the periodic behaviour passes to the first body PE (red

line) and then to the second (orange line). You can see a clear

phase difference between the PEs, and if you look carefully

at the plot, you will convince yourself this is 60 degrees.

 Note also that all signals are in the desired range of -

1.0 to +1.0 as discussed above. Finally you will note that it

takes around 5 second for the circuit to settle into a periodic

behaviour; this is called a ‘transient’.

 On the actual Arduino PE’s this behaviour can be seen

through the brightness of the LEDs which is proportional to

the PE signal. This is done through standard pulse-width

modulation.

Figure 9 Tanh function.

Nature of Computing 10

16.6 The Lamprey Model.
The Lamprey is a primitive vertebrate which, without any

fins, swims with a snake-like motion by deforming its body

in a very special way. There is a propagating wave of

movement down the backbone segments. This critter has

been the subject of a lot of mathematical modelling and

analysis, computer simulation and has been used as

inspiration for the development of swimming robots.

 Here we discuss the ‘standard’ neural circuit model

for the lamprey shown below where we have drawn just three

neurons (PEs) out of a chain on N PEs.

Consider the middle (i’th) PE. We can see that it is connected

to its anterior PE (i-1) and also to its posterior PE (i+1), this

means the Head is at the left and the Tail is at the right. The

state variable of each PE is the angle 𝜃 which is called its

‘phase’. The phase of each segment increases linearly with

time, and is described by the ordinary differential equation

(ODE)

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 (1)

where 𝜔𝑖 is the frequency of oscillation of segment PI-i. What

does this mean? Well interpreting 𝜃 as an angle, when this

increases linearly and reaches 2𝜋 rads (or 360 degs), then it

‘wraps around’ and becomes zero again, and then starts to

rise, a bit like this.

Figure 9 Screen capture images of a swimming sea

lamprey [Photo attribute request]

Chapter 16 Systolic Arrays 11

Now we need to turn to the coupling between the PEs, as

mentioned above we need to couple to both the anterior and

posterior PEs For sound theoretical reasons we choose to

model the coupling as a function of the phase difference

between neighbouring segments, i.e., (𝜃𝑖−1 − 𝜃𝑖) for PE-i

and its anterior. We choose this function to be periodic and in

particular a sine function. The coupling terms therefore look

like this.

𝑎𝑈 sin(𝜃𝑖+1 − 𝜃𝑖) (2a)

𝑎𝐷 sin(𝜃𝑖−1 − 𝜃𝑖) (2𝑏)

Here (2a) refers to the coupling with the posterior PE (the

literature refers to this as ‘upward’), here 𝑎𝑈 is the coupling

strength, and (2a) refers to coupling with the anterior PE.

 Now we combine eqs (1) and (2) and build up the

ODEs for our PE chain.

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 + 𝑎𝐷 sin(𝜃𝑖−1 − 𝜃𝑖) + 𝑎𝑈 sin(𝜃𝑖+1 − 𝜃𝑖) (3)

with special cases for the Head,

𝑑𝜃1

𝑑𝑡
= 𝜔1 + 𝑎𝑈 sin(𝜃2 − 𝜃1)

and for the Tail

𝑑𝜃𝑁

𝑑𝑡
= 𝜔𝑁 + 𝑎𝐷 sin(𝜃𝑁−1 − 𝜃𝑁)

It’s quite straightforward to convert these equations into code

which runs on the Arduino, for the Head, Body and Tail we

have, respectively

dudt[0] = omegaHead + au*sin(inputPost - u[0]);

 dudt[0] = omegaSegm + ad*sin(inputAnt - u[0])
 + au*sin(inputPost - u[0]);

Nature of Computing 12

dudt[0] = omegaTail + ad*sin (inputAnt - u[0]);

You will at once notice a fundamental difference between the

model expressed in the ODEs (3) and the above code. The

ODEs refer to subscripted state variables 𝜃𝑖, while each PE

has one ODE u[0] and inputs. Let’s redraw the above

structure diagram from the point of view of coding.

Here the circles (neurons) are incarnated as an individual

Arduino on a PE, and the connexion arrows are live electronic

signals.

 So you see the lamprey model requires bi-directional

communication which can be coded using either pulse-length

or analogue voltage approaches.

