
N-Body Simulation 
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This is all about N-bodies moving under gravitational attraction. I have in mind the following scenario, simulating the 

Earth, Sun and a bunch of asteroids. The code will be written in C (template provided) which will generate an Octave 

file to plot out the orbits (provided).The task is to code the simulation (it involves some loops) then to parallelize it 

and measure the speed-up. No need to understand the physics, which comes next, only the algorithm is important. 

The Physical Model 

 

The scenario is shown on the left, the green Earth orbiting the Sun, with a few asteroids shown in the ‘asteroid belt’, 

the diagram is almost to scale. Now the physics. The force between two masses 𝑚1and 𝑚2is attractive (negative 

sign) and is given by 

𝐹 = −𝐺
𝑚1𝑚2

𝑑12
2  

Note how the distance 𝑑12
2  appears in the denominator (bottom). This means that the larger the separation between 

the masses, the smaller the force. The above expression gives us the magnitude of the attractive force. \the distance 

between the two masses is just 

𝑑𝑖𝑗 = √[(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦)2] 

In 2D (or 3D) we can write the expression for force as a vector equation (vectors are bold) 

𝑭𝑖𝑗 = −𝐺
𝑚1𝑚2

𝑑𝑖𝑗
2

(𝒓𝑖 − 𝒓𝑗)

𝑑𝑖𝑗
 

This is the force on mass i due to mass j as shown in the above diagram. There are two components on the right side 

of this expression. First, we have the magnitude of the force, 

−𝐺
𝑚1𝑚2

𝑑𝑖𝑗
2  

and second, we have a term that gives us the direction of the force 

(𝒓𝑖 − 𝒓𝑗)

𝑑𝑖𝑗
 

This is just the vector between the two masses divided by the length of the vector, in other words it has length = 1.0 

but points from from the j’th mass to the i’th mass. The negative sign reverses this, so that the force vector on i from 

j points towards j i.e. j attracts i. 



Now we can write this as force components to prepare for coding 

𝐹𝑖𝑗
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= −𝐺
𝑚1𝑚2

𝑑𝑖𝑗
2

(𝑥𝑖 − 𝑥𝑗)

𝑑𝑖𝑗
 

𝐹𝑖𝑗
(𝑦)
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Now each object j will apply a force to object i so the total force on object i will be 

𝐹𝑖
(𝑥)

=∑𝐹𝑖𝑗
(𝑥)

𝑁
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Here’s some graphics to help. Below left you can see the x and y-components of a single force. On the right you can 

see how the forces from three masses (j) add to produce a summed force on i. Note that the closer the masses are 

together the larger the forces. The detail (rightmost) shows how the three forces add together. 

When we know the total force on the object i then we calculate its acceleration, then speed, then update its 

location, all using x-y components. 

Finally, we need to use the forces to get the masses to move. Using Newton’s second law, we can update the 

components of the masses’ velocity after a time interval ∆𝑡, e.g., 

∆𝑣𝑖
(𝑥)

=
𝐹𝑖
(𝑥)

𝑚𝑖
∆𝑡 

and use the new velocity to update the position of the mass 

∆𝑥𝑖 = 𝑣𝑖
(𝑥)
∆𝑡 

 

  



Algorithm 
This is written out for the x-component only. Replicate lines for the y-component. The following loops will be 

contained in an outer loop which runs for nrItns which is a parameter. 

for each body i { 

     set 𝐹𝑖
(𝑥)

= 0 

 
   for each body j which is not i { 

       calc the force on i due to j  𝐹𝑖𝑗
(𝑥)

 

       then sum the force into i   𝐹𝑖
(𝑥)

 +=  𝐹𝑖𝑗
(𝑥)

 

   } 
 

    use 𝐹𝑖
(𝑥)

 to find accel, speed and  

    hence calculate new position 
} 
 

 

Coding 
The template code does everything except the main computational loop which you will parallelize. The bodies are 

instances of the following struct 

struct Body_struct { 
    double mass; 
    double pos[2]; 
    double vel[2]; 
}; 

 
scalar mass 
vector x,y position 
vector vX, vY speeds 

 

You will see in the code that any array bodies[] is available whose elements are the above struct. 

You will need X and Y components of vectors. These are arrays of dimension 2. Here’s an example of how to use 

these vectors, for the example of the total force on the i’th object. X and Y are indices 0 and 1  defined in nbody.h. 

tot_force_i[X] = 0.0; 
tot_force_i[Y] = 0.0; 

 

  



The following variables are declared at the top of main(); you will need these to code your loops. Their relationship 

to the maths symbols is shown. You are likely to code the expressions in the order shown (refer to detailed pseudo-

code below) 

 

r[X] 

r[Y] 
𝑥𝑖 − 𝑥𝑗 

𝑦𝑖 − 𝑦 

Components of vector from j to i. 

dist 
𝑑𝑖𝑗 = √[(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦)2] 

Length of above vector 

force_mag 
𝐹 = −

𝐺𝑚𝑖𝑚𝑗

𝑑𝑖𝑗
2  

Magnitude of attractive gravity force 

 

force_ij[X] 

 

force_ij[Y] 

𝐹𝑖𝑗
(𝑥)

= 𝐹 (
𝑥𝑖 − 𝑥𝑗

𝑑𝑖𝑗
) 

𝐹𝑖𝑗
(𝑦)

= 𝐹 (
𝑦𝑖 − 𝑦𝑗

𝑑𝑖𝑗
) 

 
x and y-components of the force from j to i. 

tot_force_i[X] 

 

tot_force_i[Y] 
𝐹𝑖
(𝑥)

=∑𝐹𝑖𝑗
(𝑥)

𝑁

𝑗≠𝑖

 

𝐹𝑖
(𝑦)

=∑𝐹𝑖𝑗
(𝑦)

𝑁

𝑗≠𝑖

 

 
 

 
x and y-components of total force on i. 

dv[X] 

 

dv[Y] 
∆𝑣𝑖

(𝑥)
=
𝐹𝑖
(𝑥)

𝑚𝑖
∆𝑡 

∆𝑣𝑖
(𝑦)

=
𝐹𝑖
(𝑦)

𝑚𝑖
∆𝑡 

 
Updating x and y-components of the velocity 
of body i. 

 

Pseudo-code 
 

 
for loop iterating over nrBodies using index i 
   // First deal with forces on i from j 
   set tot_force_i[X] to zero 
   and same for Y 
   for loop iterating over nrBodies using index j 
       if j is the same as i bypass all the following 
       get the difference between the body[i] pos[X] and body[] pos[X] 
       do the same for pos[X] 
       calc dist which is the length of the vector with the above components 
       calc force_mag the magnitude of the gravity force on i from j 
       calc the X component and add it to force_ij[X] 
       same for the Y 
   end for 
 
   // Now update velocities and speeds 
  calc dv[X] the velocity change using tot_force_i[X] and bodies[i].mass and dT 
  same for dv[Y] 
  update the bodies velocity bodies[i].vel[X] += … 
  same for Y 
  update bodies position bodies[i].pos[X] += … using the updated velocity and dT 
end for 
 



 

Test your Code 
Make sure the line of code writeDataToOctave(logfile, time, bodies, nrBodies);  at the head of the main 

computational loop is active. Run a simulation with one thread and a small number of asteroids. In Octave, run the 

script log.m and you should see the Earth orbit and those of your asteroids. If these are not circles, you must revisit 

your code. When all OK comment out the above line. 

Parallelization 
You should choose a suitable for-loop. I suggest you use the #pragma omp parallel for private(<list>) directive 

where <list> is a comma-separated list of variables you want to be private to each thread, in other words NOT 

SHARED. That may take some trial and error. 

Investigation 
This is a huge computational problem with nested loops. I ran some successful simulations with the following 

parameter set 

nrItns = 5000; 
1000 asteroids (user input) 
1 to 16 threads 

 

A Touch more Physics 

Calculating Object orbital speeds 
When a mass moves in a circle then the force acting to keep it on the circle is 

−
𝑚𝑣2

𝑟
 

so, when the force is supplied by gravity, from a central mass M (think Sun) then we have 

−
𝑚𝑣2

𝑟
= −𝐺

𝑀𝑚

𝑟2
 

After a bit of simplification, solving for v we have 

𝑣 = √
𝐺𝑀

𝑟
 

This is used in the code to fix the initial velocity of the bodies around the Sun given the distance r we place them 

from the Sun. Then they will move on circular orbits. Any other speed will result in an elliptical path or a hyperbolic 

path (the object flies off to infinity). 

Also look at the expression for v. The mass m of the object has disappeared! So, the speed does not depend on the 

mass of the object! So, all objects at the same distance from the Sun will orbit with the same speed! 

Scaling 
Some of the numbers we could use are frighteningly large. The mass of the Sun is over 1030 kg and the Earth is over 

1024kg. The distance between Earth and Sun is around 150 million km. Putting such large numbers into variable 

might be troublesome, even with doubles. So, instead we choose to scale the original equations. We scale as follows 

(i) Divide all distances by the Sun-Earth distance. So, the Earth’s orbit is now 1 unit. 

(ii) Divide all masses by the mass of the Sun. So, all masses are less than 1 

(iii) Set G = 1 (its physical value was around 10−11 metres-cubed per kg second squared). 



Taking these scaling factors into account, the effect is to make simulated time run faster by around 5,000,000  times. 

So the physical Earth takes 365 days to orbit the sun, but the simulated earth takes 6.3171 secs (unless I made a boo-

boo). Which is why it makes sense to simulate.  


