
Harry Investigation Guidance
Here’s a suggested workflow

Some House Rules

• When using floats (in declarations and assignments) use the decimal point 100.0

• Declare Pixycam variables following their API

• Template sketches
o Have a main file 3402_R_
o Call the library CBPFBO_StepperA.h or CBPFBO_StepperAX.h in libraries folder
o Use a second tab 3402_Helper1 which contains cprintf(….);

• Library files are in portable > sketchbook > libraries

• Use the portable Arduino folder

Moving along a straight line
• Sketch 3402_R_Straight_Line.ino

o variable dx (library) is the distance a wheel moves in mm for one step

o function setSpeeds(…) is found in CBPFBO_StepperAX.h

o function stepMotors(…) is also found there

o use a for or while loop to take steps, each iteration take 1 step for left & right

• Complete the sketch to get the robot to move forward a given distance in mm.

Moving along an arc
• Sketch 3402_R_Arc

o You should specify a desired distance in mm and an angle in degrees, then convert to rads.

o The ‘algorithm’ which you need to code is outlined below and details are provided at this link

https://colin-

price.wbs.uni.worc.ac.uk/Courses_2021_22/Comp2403/CBP_Notes_Book/Ch1_Kinematics_Stepper

Motors.pdf

• Complete and test the sketch

o Some lines need uncommenting

o Other lines need adding, see below and link above.

Get to move a

distance on a

straight line

Get to move on an

arc with a specified

radius and angle

Get to follow a line

using Pixycam

Get it to recognize

junctions

Conversation

about problem(s)

to solve

https://colin-price.wbs.uni.worc.ac.uk/Courses_2021_22/Comp2403/CBP_Notes_Book/Ch1_Kinematics_StepperMotors.pdf
https://colin-price.wbs.uni.worc.ac.uk/Courses_2021_22/Comp2403/CBP_Notes_Book/Ch1_Kinematics_StepperMotors.pdf
https://colin-price.wbs.uni.worc.ac.uk/Courses_2021_22/Comp2403/CBP_Notes_Book/Ch1_Kinematics_StepperMotors.pdf

Line Following
• Sketch 3402_R_Line_Follow

o Write a function getErrorX(). You need to use the value of x0 from the vector tail and the width of

the camera when it is line mode (I seem to recall this is 40 pels). Don’t forget to normalize the result

o Use the function moveABit(float error, float deltaT); in the library CBP_FBO_StepperA. Play around

with deltaT, sometimes I set this to 0.5, other times to 0.8.

• Complete and test out the sketch

Detecting Intersections
• Sketch 3402_R_Junction_Test will let you explore Pixy’s intersection API Here’s what I got for a left turn, a

right turn and a tee. Didn’t do a crossing.

robot location

o Look at the range of angles the function returns, not exactly 90 or -90.

• Now open up the sketch 3402_R_Junction_React

o Look over the function junctionSearch(…) which identifies the junction (LEFT, RIGHT, TEE, NONE)

which are defined in CBPFBO_StepperA.h

o This calls detectCorners(…) which is found in CBPFBO_StepperA.cpp. You can see how we have dealt

with the uncertain angles returned by the PixyCam API and output clean exact angle

Now time to code the robot to detect junctions and to turn. Let’s have a look at one approach. Here’s what the robot

should do. It starts off top left following the line. Then top right PixyCam detects the junction. So the robot must

move forwards until the centre of its wheel is exactly above the junction. Then it spins 90 degrees about the centre

of its axle. At this point it has navigated the junction and moves on to the next challenge.

The following functions are available in the library. Some, you’ve already seen.

void straightLine(int dist, int vMax, bool upRamp, bool
downRamp);

moves a distance with a max vely and can
ramp its speed up at the start and down
at the end. Both can be turned on or off.

int detectCorners(int16_t angs[]); returns junction type when fed with an
array of PixyCam intersection angles

void moveABit(float error, float deltaT); follows a line when provided with the
perceived error and some time constant

• Now code robot behaviour to follow straight lines and navigate intersections

o Think about what code architecture to use.

