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Purpose (i) To investigate a coupled leaky-integrator oscillator and discover why this is 
doomed to fail (ii) To investigate a non-linear ‘limit cycle’ oscillator which is a good 
model for biological oscillators, (iii) to investigate the phase-delay neural circuit 

Files Required Webots and Octave assets. 

ILO Contribution 3 

Send to Me   

Assignment Info.  

Homework Read Chapter 7 

Activities 
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A coupled leaky-integrator circuit. 
 
Here’s the diagram of the coupled leaky integrator circuit we shall investigate.  
 

 
 
As explain in class, and in Chapter 7, theory tells us that this circuit will only oscillate if (i) a = 2 and 
(ii) 𝑤12𝑤21 < −1.  
 
(a) Download and unzip the Octave assets to your desktop. Now run the script Solve_Two_Leakys 
and when prompted input the following parameters a = 2, 𝒘𝟏𝟐 = −𝟒, 𝒘𝟐𝟏 = 𝟓. You will see the 
value of 𝑢1 oscillating and also the trajectory in the 𝑢1-𝑢2 phase plane. 
 
If you want to see the trajectory dynamically then you can run the script Solve_Two_Leakys_New 
 
(b) Let’s break the condition a = 2. Make two further runs, one with a just a little less than 2 and the 
second with a just a little more than 2. What do you observe? Can you describe how the values of 𝑢1 
change with time? If 𝑢1 were the length of a car suspension spring, what would this mean about the 
car? 
 
The second condition that the product of the weights should be < -1 is easily satisfied, since it says 
nothing about the exact numerical values. 
 
(b) Investigate other values of 𝑤12 and 𝑤21 bearing in mind it’s the product that’s important. What is 
the effect on the oscillation as the product increases? 

Remember empty synapses are inhibitory 

(negative) and filled synapses are excitatory. 

The inhibitory ‘synapses’ labelled -1 are 

modelling the leak in the bucket. Here the 

weight from neuron 1 to neuron 2, 𝑤21is a 

positive number and the weight from 2 to 1 is 

negative, i.e., 𝑤21 < 0 

 



 
(c) Now just for fun, break the second condition. Keep a = 2 but enter values to make the product of 
𝑤12 and 𝑤21 greater than -1, perhaps even positive. 
 
The point to take away from this is that two coupled leaky integrators can be made to oscillate, but 
this is certainly not how biology builds its oscillators. We shall now move on to a real biological 
neural oscillator model. 
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The Hopf Oscillator 
 
Here’s the neural circuit for the Hopf oscillator. Details of how this circuit is related to actual 
neurophysiology is presented in Chapter 6. Note the resemblance with the coupled leaky integrator 
model, the neurons influence each other in the same ‘direction’ 
 

 
(a) Run the script Solve_Hopf or Solve_Hopf_New (to get a dynamic solution) with the following 
baseline parameters 
 

𝛼 = 5, 𝜇 = 1, 𝜔 = 3.1415 
 
You should find the phase trajectory approaches a circular limit-cycle of radius r = 1 and that the 
period of oscillations is 𝑇 = 2𝜋 𝜔⁄  which here evaluates to 2 seconds. Sweet! 
 
(b) Investigate the effect of changing 𝛼 keeping the other parameters unchanged. Make it smaller as 
well as larger. What happens to the u1-time plot and to the phase plane trajectory? State in Simple 
English what the parameter alpha does. 
 
(c) Return alpha to its default value. Now investigate the effects of changing 𝜇. HINT: set it to 
squared values, such as 4, 9, 16, 25. Explain in Simple English what mu actually does. 
 
(d) I hinted above that the parameter 𝜔 is related to the period of oscillation T through the 
expression 𝑇 = 2𝜋 𝜔⁄ . Use this to get an expression for 𝜔 as a function of period T. Then choose 
some values for T, calculate the corresponding omegas and plug these into the model. Check you do 
get oscillations of period T. 
 
(e) Investigate changing the initial conditions of the oscillator. I suggest you change neuron-1 initial 
condition. The line of code where these are set are clearly indicated. 
 
You should have found that this oscillator will always oscillate for its parameter values, and unlike 
the coupled leaky integrator oscillator does not require exact parameter values. It works, 
biologically. 
 

Here, the parameters 𝛼, 𝜇, 𝜔 are all 

fixed in time, and r is a variable given 

by 𝑟 = ඥ𝑢1
2 + 𝑢2

2. 

The parameter 𝜔 is the angular 

velocity of oscillation in rads/sec and r 

is the radius of the circle in the phase 

plane 
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The Phase-Lag neuron. 
 
This is nothing new. It is based on our single leaky-integrator neuron, but instead of using a pulse 
input we use a sine-wave input. Here’s the ODE for the neuron and the idea shown as a sketch 

 
The amount of phase lag is specified by setting a value for tau (or a given oscillator omega) and k is 
fixed so the amplitude of the output is the same as the input. See chapter 7 for details. 
 
(a) Run the script Solve_Phase_Lag_1 which inputs a sine wave of amplitude 1 to the neuron. You 
can choose the phase lag (but this must be less than 90 degs). So not select amplitude correction. 
Look at the output and check that the neuron gives you the correct phase lag. Here’s how to 
calculate the phase lag from the plots, I chose 30 degs. 
 

 
 
(b) Now re-run the script for the same desired phase lag and select corrected amplitude. You should 
get a phase-lagged sine wave with no amplitude change. 
  
(c) Now investigate other phase lags (up to the limit of 90 degrees). Perhaps try 90 degrees and look 
at the values of tau and k which you get. Try 100 degrees … 
 
(d) Roll back to requesting a 60 degree phase lag. Look carefully at the neuron output. You will see it 
overshoots on the first cycle or so. Any idea why? 
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Three Cascaded Phase-Lag neurons 
 
To get larger phase differences, we can cascade three neurons, each providing a part of our desired 
phase lag. So, if we need a phase lag of 180 degrees, we can achieve this with a cascade of 3 neurons 
each providing a 60 degree lag. 
 
(a) Run the script Solve_Phase_Lag_3. Figure 1 shows you the input and all three cascade outputs, 
Figure 2 shows you the input and the output of the whole cascade. Run for a phase difference of 60 
degrees 
 

First, find the time for a complete period (360 
degrees). Here this is 2.0 seconds. Then find 
the time of the lagged peak. I measured 0.16 
seconds. The phase lag is calculated by simple 
proportion: 
 

lag = 360*(0.16/2.0) = around 30 degrees 

𝑑𝑢

𝑑𝑡
=
1

𝜏
ሺ−𝑢 + 𝑘𝐼ሻ 



(b) Now run for 90, 120 and 180 degrees. Observe how each successive neuron initially overshoots 
its desired phase lag. 
 
(c) Repeat and note down in each case the ‘transient time’, the time needed for the final output to 
settle to an amplitude of 1.0 
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Hopf Oscillator coupled with Cascade Phase-Lag neurons 
 
This is in preparation for our Hexapod robot program. It’s putting all of the above together. Here’s 
the Hopf oscillator followed by a chain of three neurons, each providing 1/3 of the desired phase 
delay 
 

 
Run the script Solve_Hopf_with_PhaseDelay_New which plot out the motion of neurons u(1) and 
u(5) on the phase plane. 
 
Important phase lags to try out are 60, 90, and 180 degrees. You should observe some initial 
transient (beginning time) where the trajectory is far from the limit cycle, but is attracted to it after 
some time. 
 

  

u(1) 

u(5) 


