
Chapter 7 Neural Oscillators 1

Chapter 7
Neural Oscillators

A brief Introduction
Neural oscillators are all around us, in fact some of the most

important ones are inside us, I am thinking of the neural

oscillators which make our heat beat, our lungs breathe, our

gut transport food down the digestive tract, and of course the

neural circuits which drive the motor neurons in our legs to

make us walk. Neural oscillation also features in many

disorders such as synchronization of brain neurons during

epileptic seizures, tremors in Parkinson’s disease patients,

and disruption of cortical oscillation in schizophrenia.

All of the above are of great interest within computing, where

computational solutions of the underlying mathematical

models will further our understanding. But perhaps the most

interesting application of modelling neural oscillators is in

robotics, in particular those circuits which enable legged

robots to walk, segmented robots to swim and crawl. This

application area is called ‘Central Pattern Generators’

(CPGs). The idea is that a small neural circuit will drive

tetrapod/quadruped legs (think a horse) to make it move with

a number of different gaits (canter, trot, gallop). In this

chapter we shall work up to an understanding of hexapod

(beetle) gaits.

Oscillation Refresher
Before we get into the details, let’s just review our

understanding of simple mechanical oscillations with which

we are all familiar. Let’s take a car suspension as an example,

Fig.1 shows a Land Rover spring and a simple model, the

Land Rover body mass (yellow) on the spring, the bottom of

which is resting on the ground (we’ve neglected the wheel

and tyre in the model). This is a simple mass-spring system. Figure 1 Land Rover Suspension

Nature of Computing 2

When you are driving along and hit a bump, then the spring

gets compressed, and the car body will oscillate up and down

as shown in the diagram below. The body starts at a and as

time progresses, passes through b, c, d, and back to a where

the cycle of oscillation starts again. Note the red arrows show

how the body is moving at these snapshots in time.

When we model the suspension (mathematically) and plot out

the solution, then we find the displacement and velocity of the

car body change as shown in Fig.2. These have been labelled

according to the above diagram. What do these tell us? This

is not easy to answer, since we must look at two plots and the

diagram, a bit like playing the organ1.

Well at a there is no displacement, but the Land Rover body

has positive velocity which means it moves upwards until it

reaches its maximum displacement at b. Here its velocity is

zero. Then the body velocity becomes negative, it is moving

down. So its displacement decreases, and it passes through

zero displacement c where the velocity is its largest

(negative) value. Then it slows down, and at d it has stopped

(zero velocity) with the largest negative displacement. Then

its velocity becomes positive, so it rises again until it hits its

starting state a. One cycle of oscillation is complete, the rest

is repetition!

Looking at Fig.2 we see something interesting. Both

displacement and velocity are oscillating with the same

period, around 2 sec. The peak of the velocity seems to

‘follow’ the peak of the displacement. So, displacement and

1 I am learning the organ at the moment, so you have my symphony.

Figure 2 Displacement and Velocity of an

oscillating Land Rover

Chapter 7 Neural Oscillators 3

velocity are both periodic in time. They are clearly related, so

this raises the question how could we show this relationship?

The answer is fundamentally important to understand

oscillating systems, this is the concept of the phase plane.

The diagram below reproduces Fig.2 with the addition of the

phase plane on the right, a plot of displacement versus

velocity.

This result is quite amazing; we get a closed curve! We start

at a then progress through b, c, d and back to a. Then we go

around the curve again (the red arrow shows the direction of

motion around this curve). This works because both

displacement and velocity are periodic, with the same period.

This trajectory of our suspension system in the phase plane

is quite fundamental, and in general tells us a lot about an

oscillating system. The phase plane combines displacement

and velocity, but we have lost an explicit representation of

time. Of course, we can recover this by using a coded

solution.

So, let’s develop this further for our Land Rover Suspension

system. When the Land Rover hits a bump, it starts to

oscillate, but the oscillations are damped (removed) by the

Oscillator_Phase_Plane.m

Nature of Computing 4

suspension shock absorbers. Let’s see how the above

diagrams change.

The blue plots reproduce the above, the red plots show the

effect of damping. Both the Land Rover body displacement

and velocity decay down to zero; it stops moving (zero

velocity) and approaches its ‘sleeping’ location (zero).

All this information is contained in the phase plot. The red

spiral trajectory, moving inwards (0,0) clearly shows that

both the Land Rover suspension displacement and body

velocity decrease with time and end up at zero.

Now let’s do something hypothetical and see what happens if

we add energy into the suspension system rather than taking

it away. A simple computation yields the following result.

Chapter 7 Neural Oscillators 5

Both displacement and velocity increase with time due to the

added energy, the trajectory on the phase plane is a spiral

expanding outwards. This is quite an unstable system and

would spell disaster for a physical suspension system.

In summary, we see three sorts of trajectories on the phase

plane. First is the stable closed ellipse. In general, this can be

any smooth shape, and is called a limit cycle. The other

trajectories either move towards this limit cycle or move

away from it.

Building an Oscillator from Leaky Integrators
Here we shall attempt to build a neural oscillator by

connecting two leaky integrator neurons together. We shall

discover that it is possible to create an oscillator, but also that

this is useless, and cannot exist in a real biological system.

The first thing to note is that a single leaky integrator neuron

cannot oscillate; we have investigated single neurons in

detail, and we have never experienced oscillation. So, we turn

to two neurons and think how to make these oscillate. If we

put them in a chain, one after the other then again, we will not

get oscillations. The only possibility is if we connect the

output of the second to the input of the first, so we have a

feedback loop, rather like a microphone close to a

loudspeaker which produces a howl.

Let’s take two neurons and consider the general case where

each neuron is connected to each other neuron, including

itself. This is shown in Fig.3. The strengths of the connexions

between the neurons are shown as the ‘w’ symbols, where 𝑤𝑖𝑗

is the strength of connexion from neuron j into neuron i. So

𝑤12 concerns the output of neuron-2 coming into the input of

neuron-1, and 𝑤11 shows the input of neuron-1 from its own

output.

Now let’s write down some possible equations for two leaky

integrators connected. This is straightforward and follows

from the material presented in Chapter 5.

Figure 3 Two neurons totally connected with

each other

Nature of Computing 6

𝑑𝑢1
𝑑𝑡

=
1

𝜏
(−𝑢1 + 𝑤12𝑢2)

𝑑𝑢2
𝑑𝑡

=
1

𝜏
(−𝑢2 + 𝑤21𝑢1)

The first terms on the right in both equations are the integrator

leak, and the second terms are the coupling from the other

neuron. So, we view the leak as a neuron coupled to itself.

We can write the above equations in matrix form

[
�̇�1
�̇�2
] = [

−1 𝑤12

𝑤21 −1
] [
𝑢1
𝑢2
]

Now, the theory of linear systems (see appendix) tells us that

if this system will oscillate then the trace of the matrix must

be zero, Here the trace is -1 + -1 which is -2 which is not zero.

So, we must add a positive coupling from at least one neuron

into itself, let’s call this a and do this for neuron-1. Then we

have

[
�̇�1
�̇�2
] = [

𝑎 − 1 𝑤12

𝑤21 −1
] [
𝑢1
𝑢2
]

Now the trace is (a – 2) and since this has to be zero, we find

that a = 2. No other value will do. This turns out to be a real

problem, but we shall come back to this, since there is another

condition on the above system if it is to oscillate. The

determinant of the matrix must be greater than zero. For the

above matrix this means

(𝑎 − 1)(−1) − 𝑤12𝑤21 > 0

which simplifies to

𝑤12𝑤21 < −1

This result tells us that one of the interconnections must be

excitatory and one inhibitory, so the product is a negative

number (and less than -1). So, our leaky integrator oscillator

circuit looks like Fig.4 where excitatory and inhibitory

synapses have been clearly indicated.

Figure 4 Leaky integrator oscillator circuit

Chapter 7 Neural Oscillators 7

While this neural circuit will work, it will only work in

theory. The problem is that the value of a needs to be fixed to

an exact value, a = 2. Mathematically this is possible, but it

is infeasible in a biological system which functions using

chemicals whose concentrations may have a range of values.

Your heart does not stop beating when you have a cup of

coffee (which affects levels of methylxanthine in your

system). A similar conclusion could be reached thinking

about solving the above system on a digital computer; you set

the value of a like this a = 2.0; but the CPU represents this

number with a finite number of bits, and there is no guarantee

that its representation is exactly 2.0. Glance at Fig.5 which

shows my computer’s solution which is not a steady

oscillation. The behaviour is hardware dependent, it is not

robust to changes unlike a biological system. My heart beats,

so does yours and at about the same rate.

There is another nasty property of the leaky-integrator

oscillator, which is also shared by the Land Rover

suspension. This concerns the amplitude of the oscillation.

The above theory does not predict a value for the amplitude,

so we conclude this could be anything from 0.1 to a million.

The trajectory in phase space could be of any size. Biology

does not like such unknowns; all our hearts beat with

approximately the same amplitude.

Biological Neural Oscillators
Recordings of neural oscillators in vivo have been made at a

number of scales from small collections of neurons to larger

interacting populations, especially in the brain cortex. These

have been successfully modelled such as the FitzHugh –

Nagumo model of small collections, or the Wilson-Cowan

equations for the cortex. Studies reveal that real neurons emit

periodic pulses or bursts of oscillations. These are called

‘spiking’ neurons, see Fig.5. Computational models of

spiking neurons are used mainly to understand biological

neurons rather than applications in engineering scenarios

such as Central Pattern Generators for legged or segmented

Figure 6 Solution of leaky integrator oscillator

where the value of a has been set to 2.0 in the

code.

Figure 5 Simulation of 'spiking' neurons. Top

Integrate and Fire, bottom Atoll models

Nature of Computing 8

robot motion. We shall study the simplest model which

captures the fundamental behaviour of most neural

oscillators, the Hopf oscillator. Later we shall apply this to

the locomotion of a hexapod robot.

The Hopf Oscillator
This comprises a pair of neurons, and its structure is very

similar to the leaky-integrator model discussed (and rejected)

above. Each neuron influences itself and is connected to the

other neuron. Like the leaky-integrator oscillator, one of these

inter-connections is excitatory and the other is inhibitory.

Here are the equations for the neurons

𝑑𝑢1
𝑑𝑡

= 𝛼(𝜇 − 𝑟2)𝑢1 − 𝜔𝑢2

𝑑𝑢2
𝑑𝑡

= 𝜔𝑢1 + 𝛼(𝜇 − 𝑟2)𝑢2

where there are three parameters, 𝛼, 𝜇 and 𝜔 and the variable

r is just

𝑟 = √𝑢1
2 + 𝑢2

2

Looking at the two ODEs, the feedback term in each neuron

depends on (𝜇 − 𝑟2) so if r is small then this is positive and

the values of both neurons will grow. But if 𝑟2 > 𝜇 then the

feedback is negative, and the values of both neurons will fall.

In fact the trajectory in the phase plane moves to a circle of

radius √𝜇. This is a stable limit cycle which attracts all

trajectories in the phase plane, Fig.8. The above ODEs for the

neurons can be transformed to polar coordinates (radius r

angle 𝜃) as shown in Fig.9.

𝑑𝑟

𝑑𝑡
= 𝛼(𝜇 − 𝑟2)𝑟

𝑑𝜃

𝑑𝑡
= 𝜔

Figure 7 Structure of the Hopf neural oscillator

Figure 9 Limit Cycle for the Hopf oscillator

Figure 8 Polar coordinate description of the

phase plane

Chapter 7 Neural Oscillators 9

The first expression shows how the radius of the trajectory

point changes with time, and the second expression shows

how the angle changes with time. You can see that the angle

changes at a constant rate 𝜔 which defines the frequency of

the oscillator. The right-hand-side of the first expression is

positive if 𝑟2 < 𝜇 causing r to increase, and it’s negative if

𝑟2 > 𝜇 which causes r to decrease. When 𝑟2 = 𝜇 then the

right-hand-side is zero, so r does not change. This shows that

the trajectory will always approach the limit cycle, which for

the Hopf oscillator is a circle.

Phase Lag Neurons
When we come to modelling insect gaits, we shall find that

their legs oscillate with the same frequency, but there is a

phase lag between legs, e.g., a 180 degree phase lag means

one leg is moving forwards (raised off the ground) and the

next one is moving backwards (on the ground) so the bug

moves forwards.

This can be achieved with a single leaky-integrator neuron

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + 𝐼)

where the input is e.g., 𝐼 = sin𝜔𝑡 which is a sine wave with

frequency 𝜔. The output u of the neuron is another sine wave

with amplitude

𝐼

√1 + 𝜏2𝜔2

which is always less than I and with a phase lag given by

tan𝜑 = 𝜔𝜏

Now we use these results to engineer a neuron which

provides us with a desired phase lag but keeps the amplitude

constant. Since the frequency of the sine wave is given (e.g.,

by the Hopf oscillator) then we use the time constant 𝜏 to set

our desired phase,

Figure 10 Input (blue) and output (red) from a

single neuron giving a phase difference of 60

degrees

Nature of Computing 10

𝜏 =
tan𝜑

𝜔

Now to restore the amplitude to its original value I we must

multiply the input to the neuron by the factor by which the

amplitude was decreased, namely √1 + 𝜏2𝜔2. So, our

engineered neuron becomes

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + 𝑘𝐼)

where

𝑘 = √1 + 𝜏2𝜔2.

This neural circuit works well, it was used to create the

phase lag shown in Fig.10.

There is one complication; due to the nature of the tangent

function, this circuit can produce a maximum phase shift of

90 degrees, and often we need more than that. The solution is

to use a chain of, say 3 neurons, and get each to provide 1/3

of the total lag we need. The neural circuit sketched below

shows just such a chain with the sine wave produced by our

friend, the Hopf oscillator.

Fig.11 shows the output of such a chain which was asked to

produce a total phase shift of 180 degrees. You can see this

by comparing the light blue curve (input) and the purple curve

(output). The only slight issue is that it takes a certain time

for the chain to settle, there is a clear initial transient which

lasts around 4 seconds or so.

Figure 11Phases along chain of three neurons, the

total phase lag is 180 degrees

Chapter 7 Neural Oscillators 11

Insect Gait Patterns – The Hexapod

Previous Work
Biological systems (creatures) have provided much

inspiration for generations of engineered robots that can

walk, crawl or swim. One of the most influential observations

for segmented creatures such as fish was the propagation of a

wave of oscillation down the length of the creature. If the

creature were cut into two, then each part would continue to

show this wave. These observations led to the idea that the

neural circuit consisted of a coupled chain of oscillators

rather than just one master oscillator.

Most previous work has adopted this architecture, e.g., the

hexapod shown below comprises six oscillators (neuron

pairs) one for each leg.

The neural circuit for this model is quite complex, the

equation for each neural oscillator has the form

[
�̇�𝑖
�̇�𝑖
] = [

𝛼(𝜇 − 𝑟𝑖
2) −𝜔

𝜔 𝛼(𝜇 − 𝑟𝑖
2)
] [
𝑥𝑖
𝑧𝑖
] +∑𝑹(𝜃𝑗

𝑖)

𝑗≠𝑖

[

0
𝑥𝑗 + 𝑧𝑗

𝑟𝑗

]

where the rightmost term captures the coupling into the i’th

oscillator from the other oscillators connected to it. You will

recognize the Hopf oscillator here. See appendix for maths.

Nature of Computing 12

Our Approach
We do not need a chain of coupled oscillators since we shall

agree not to cut up our robot into bits. Our approach is to use

a single Hopf oscillator, then circuits of phase shift neurons

to drive the legs and feet in the correct sequence.

So, let’s see what we need to achieve. The literature reports

the various gaits in a number of ways. For our hexapod there

are three principal gaits: metachronal (wave), tetrapod

(ripple), and tripod. One way of reporting these gaits is the

phase lag of each leg. I use the left front leg as the reference

(absolute phase is 0).

Perhaps the easiest to understand is the tripod gait; the legs

move in three triplets, {LF, LR, RM} move together in one

direction while {LM, RF, RR} move in the other direction,

the second group phase-lagged by 180 degrees hence this

group moves backwards while the first group moves

forwards. Here’s another way of representing the gaits.

Chapter 7 Neural Oscillators 13

Time is running to the right and the black bars show when the

legs are raised, this is the ‘swing’ part of the legs’ motion

when the foot is not touching the ground. Again the tripod

gait is easy to understand, the group {LF, LR, RM} all swing

together with the feet raised while the group {LM, RF, RR}

has feet on the ground. This is the ‘stance’ part of the legs’

motion.

Our hexapod robot inhabits Webots2, you can clearly see its

legs and feet (they move up and down) in Fig.12.

Now we must design our neural circuit to make these three

types of gait happen. We shall use a single Hopf oscillator

and drive the front-left (FL) foot and leg with the signal 𝑢1.

To drive the other legs, we need to shift the phase of this

signal to obtain the phases shown in the diagram above. A

glance at this diagram reveals two interesting facts. First the

phase difference down the left side between LF, LM and

between LM, LR is the same for a particular gait. The actual

phase difference (60, 90, 180 degrees) depends on the gait.

The second fact is that there is a 180 degree phase shift

between contra-lateral limbs (LF-RF, LM-RM and LR-RR).

This suggests the following architecture which is quite

straightforward.

The blue circles represent the robot limbs (legs + feet) and

the green circles neurons, or collections of neurons, since we

need a chain of 3 neurons to produce a phase shift of 180

degrees. A constant phase shift is produced down the left

neurons, then each left neuron is individually phase shifted

2 It would be good to get this into Unreal-4

Figure 12 Hexapod robot showing legs and feet.

It's executing a tripod gait

Nature of Computing 14

by 180 degrees and sent to the right. This is much simpler

than the coupled oscillator approach used by others.

Let’s have a look at some phase plots; we only need to

consider the left limbs; the right phases are just mirrored. The

diagram below shows a phase difference 𝜑 = 𝜋/3 (60

degrees) corresponding to the metachronal gait. The black

bars show when the foot is lifted, as shown in the gait patterns

presented above. So, let’s discuss how to get the feet to move;

we shall later return to the legs which are tricky buggers.

The black bars are correct and represent when signals must

be presented to each foot to rise. You can see the red

horizontal lines drawn at a particular threshold value, here

that is 0.866 for our chosen phase lag value. Our code will

tell each foot to rise when the phase is above this threshold.

Easy! The only question is, how do we calculate this

threshold value? Let’s explore this with the help of the

following diagram, where the stages in our argument are

indicated by yellow blobs.

First (1) We draw the bars when the LF and LM feet are

raised. Note that this happens when the phase (blue line) rises

above the threshold (red line), which we are trying to

Chapter 7 Neural Oscillators 15

discover. Second (2) we identify the phase lag 𝜑 between the

two feet and also we see the centre of the top sine wave is

located at 𝜋 2⁄ . Then the important step (3) where we identify

the angle where the foot starts to rise. Finally (4) we calculate

the value of the threshold for this angle.

So, we have the expression for the threshold

𝑠𝑖𝑛[(𝜋 − 𝜑) 2⁄]

This is a great result since it is applicable for all three gaits

with their own individual phase lags 𝜑, and is easily

translated into code, Fig.13.

We now know how to get the feet working. The final piece of

the puzzle is to get the legs moving correctly. The legs are

driven by the same phases as the feet (before the threshold

calculations). Legs have two parts to their motion, a swing

when the feet are not in contact with the ground, and a stance

where they are in contact with the ground and so provide

double setFoot(double phase,

double thresh){

if(phase > thresh)

 return UP;

 else

 return DOWN;

}

Figure 13 Code snipped to raise and lower the

feet

Nature of Computing 16

propulsion. So, legs and feet have to be coordinated in their

motion. Let’s have a look at the solution and then see how we

got to it.

The blue curve shows the foot signal; when this rises above

the threshold, the foot is up. So the leg must swing and this is

the red signal which goes from negative (pointing backwards)

to positive (pointing forwards). This signal comes from an

additional neuron which receives input from the foot neuron

when it is above the threshold. Here’s the code for the

additional neuron-17 which drive the LF leg.

if(y[0] > thresh)

 drive = 1;

else

 drive = 0;

dydt[17] = (-y[17] + 5.0*drive)/tau1;

That completes the development of our hexapod model, it

only remains to provide the complete neural circuit.

