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Chapter 7 
Neural Oscillators 

A brief Introduction 
Neural oscillators are all around us, in fact some of the most 

important ones are inside us, I am thinking of the neural 

oscillators which make our heat beat, our lungs breathe, our 

gut transport food down the digestive tract, and of course the 

neural circuits which drive the motor neurons in our legs to 

make us walk. Neural oscillation also features in many 

disorders such as synchronization of brain neurons during 

epileptic seizures, tremors in Parkinson’s disease patients, 

and disruption of cortical oscillation in schizophrenia.  

All of the above are of great interest within computing, where 

computational solutions of the underlying mathematical 

models will further our understanding. But perhaps the most 

interesting application of modelling neural oscillators is in 

robotics, in particular those circuits which enable legged 

robots to walk, segmented robots to swim and crawl. This 

application area is called ‘Central Pattern Generators’ 

(CPGs). The idea is that a small neural circuit will drive 

tetrapod/quadruped legs (think a horse) to make it move with 

a number of different gaits (canter, trot, gallop). In this 

chapter we shall work up to an understanding of hexapod 

(beetle) gaits. 

Oscillation Refresher 
Before we get into the details, let’s just review our 

understanding of simple mechanical oscillations with which 

we are all familiar. Let’s take a car suspension as an example, 

Fig.1 shows a Land Rover spring and a simple model, the 

Land Rover body mass (yellow) on the spring, the bottom of 

which is resting on the ground (we’ve neglected the wheel 

and tyre in the model). This is a simple mass-spring system. Figure 1 Land Rover Suspension 
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When you are driving along and hit a bump, then the spring 

gets compressed, and the car body will oscillate up and down 

as shown in the diagram below. The body starts at a and as 

time progresses, passes through b, c, d, and back to a where 

the cycle of oscillation starts again. Note the red arrows show 

how the body is moving at these snapshots in time. 

When we model the suspension (mathematically) and plot out 

the solution, then we find the displacement and velocity of the 

car body change as shown in Fig.2. These have been labelled 

according to the above diagram. What do these tell us? This 

is not easy to answer, since we must look at two plots and the 

diagram, a bit like playing the organ1. 

Well at a there is no displacement, but the Land Rover body 

has positive velocity which means it moves upwards until it 

reaches its maximum displacement at b. Here its velocity is 

zero. Then the body velocity becomes negative, it is moving 

down. So its displacement decreases, and it passes through 

zero displacement c where the velocity is its largest 

(negative) value. Then it slows down, and at d it has stopped 

(zero velocity) with the largest negative displacement. Then 

its velocity becomes positive, so it rises again until it hits its 

starting state a. One cycle of oscillation is complete, the rest 

is repetition! 

Looking at Fig.2 we see something interesting. Both 

displacement and velocity are oscillating with the same 

period, around 2 sec. The peak of the velocity seems to 

‘follow’ the peak of the displacement. So, displacement and 

 
1 I am learning the organ at the moment, so you have my symphony. 

Figure 2 Displacement and Velocity of an 

oscillating Land Rover 
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velocity are both periodic in time. They are clearly related, so 

this raises the question how could we show this relationship? 

The answer is fundamentally important to understand 

oscillating systems, this is the concept of the phase plane. 

The diagram below reproduces Fig.2 with the addition of the 

phase plane on the right, a plot of displacement versus 

velocity. 

This result is quite amazing; we get a closed curve! We start 

at a then progress through b, c, d and back to a. Then we go 

around the curve again (the red arrow shows the direction of 

motion around this curve). This works because both 

displacement and velocity are periodic, with the same period. 

This trajectory of our suspension system in the phase plane 

is quite fundamental, and in general tells us a lot about an 

oscillating system. The phase plane combines displacement 

and velocity, but we have lost an explicit representation of 

time. Of course, we can recover this by using a coded 

solution. 

So, let’s develop this further for our Land Rover Suspension 

system. When the Land Rover hits a bump, it starts to 

oscillate, but the oscillations are damped (removed) by the 

Oscillator_Phase_Plane.m 
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suspension shock absorbers. Let’s see how the above 

diagrams change. 

The blue plots reproduce the above, the red plots show the 

effect of damping. Both the Land Rover body displacement 

and velocity decay down to zero; it stops moving (zero 

velocity) and approaches its ‘sleeping’ location (zero). 

All this information is contained in the phase plot. The red 

spiral trajectory, moving inwards (0,0) clearly shows that 

both the Land Rover suspension displacement and body 

velocity decrease with time and end up at zero. 

Now let’s do something hypothetical and see what happens if 

we add energy into the suspension system rather than taking 

it away. A simple computation yields the following result. 
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Both displacement and velocity increase with time due to the 

added energy, the trajectory on the phase plane is a spiral 

expanding outwards. This is quite an unstable system and 

would spell disaster for a physical suspension system. 

In summary, we see three sorts of trajectories on the phase 

plane. First is the stable closed ellipse. In general, this can be 

any smooth shape, and is called a limit cycle. The other 

trajectories either move towards this limit cycle or move 

away from it. 

Building an Oscillator from Leaky Integrators 
Here we shall attempt to build a neural oscillator by 

connecting two leaky integrator neurons together. We shall 

discover that it is possible to create an oscillator, but also that 

this is useless, and cannot exist in a real biological system. 

The first thing to note is that a single leaky integrator neuron 

cannot oscillate; we have investigated single neurons in 

detail, and we have never experienced oscillation. So, we turn 

to two neurons and think how to make these oscillate. If we 

put them in a chain, one after the other then again, we will not 

get oscillations. The only possibility is if we connect the 

output of the second to the input of the first, so we have a 

feedback loop, rather like a microphone close to a 

loudspeaker which produces a howl. 

Let’s take two neurons and consider the general case where 

each neuron is connected to each other neuron, including 

itself. This is shown in Fig.3. The strengths of the connexions 

between the neurons are shown as the ‘w’ symbols, where 𝑤𝑖𝑗 

is the strength of connexion from neuron j into neuron i. So 

𝑤12 concerns the output of neuron-2 coming into the input of 

neuron-1, and 𝑤11 shows the input of neuron-1 from its own 

output. 

Now let’s write down some possible equations for two leaky 

integrators connected. This is straightforward and follows 

from the material presented in Chapter 5. 

Figure 3 Two neurons totally connected with 

each other 
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𝑑𝑢1
𝑑𝑡

=
1

𝜏
(−𝑢1 + 𝑤12𝑢2) 

𝑑𝑢2
𝑑𝑡

=
1

𝜏
(−𝑢2 + 𝑤21𝑢1) 

The first terms on the right in both equations are the integrator 

leak, and the second terms are the coupling from the other 

neuron. So, we view the leak as a neuron coupled to itself. 

We can write the above equations in matrix form 

[
�̇�1
�̇�2
] = [

−1 𝑤12

𝑤21 −1
] [
𝑢1
𝑢2
] 

Now, the theory of linear systems (see appendix) tells us that 

if this system will oscillate then the trace of the matrix must 

be zero, Here the trace is -1 + -1 which is -2 which is not zero. 

So, we must add a positive coupling from at least one neuron 

into itself, let’s call this a and do this for neuron-1. Then we 

have 

[
�̇�1
�̇�2
] = [

𝑎 − 1 𝑤12

𝑤21 −1
] [
𝑢1
𝑢2
] 

Now the trace is (a – 2) and since this has to be zero, we find 

that a = 2. No other value will do. This turns out to be a real 

problem, but we shall come back to this, since there is another 

condition on the above system if it is to oscillate. The 

determinant of the matrix must be greater than zero. For the 

above matrix this means 

(𝑎 − 1)(−1) − 𝑤12𝑤21 > 0 

which simplifies to  

𝑤12𝑤21 < −1 

This result tells us that one of the interconnections must be 

excitatory and one inhibitory, so the product is a negative 

number (and less than -1). So, our leaky integrator oscillator 

circuit looks like Fig.4 where excitatory and inhibitory 

synapses have been clearly indicated. 

Figure 4 Leaky integrator oscillator circuit 



Chapter 7 Neural Oscillators      7 
 

While this neural circuit will work, it will only work in 

theory. The problem is that the value of a needs to be fixed to 

an exact value, a = 2. Mathematically this is possible, but it 

is infeasible in a biological system which functions using 

chemicals whose concentrations may have a range of values. 

Your heart does not stop beating when you have a cup of 

coffee (which affects levels of methylxanthine in your 

system). A similar conclusion could be reached thinking 

about solving the above system on a digital computer; you set 

the value of a like this a = 2.0; but the CPU represents this 

number with a finite number of bits, and there is no guarantee 

that its representation is exactly 2.0. Glance at Fig.5 which 

shows my computer’s solution which is not a steady 

oscillation. The behaviour is hardware dependent, it is not 

robust to changes unlike a biological system. My heart beats, 

so does yours and at about the same rate. 

There is another nasty property of the leaky-integrator 

oscillator, which is also shared by the Land Rover 

suspension. This concerns the amplitude of the oscillation. 

The above theory does not predict a value for the amplitude, 

so we conclude this could be anything from 0.1 to a million. 

The trajectory in phase space could be of any size. Biology 

does not like such unknowns; all our hearts beat with 

approximately the same amplitude.  

Biological Neural Oscillators 
Recordings of neural oscillators in vivo have been made at a 

number of scales from small collections of neurons to larger 

interacting populations, especially in the brain cortex. These 

have been successfully modelled such as the FitzHugh – 

Nagumo model of small collections, or the Wilson-Cowan 

equations for the cortex. Studies reveal that real neurons emit 

periodic pulses or bursts of oscillations. These are called 

‘spiking’ neurons, see Fig.5. Computational models of 

spiking neurons are used mainly to understand biological 

neurons rather than applications in engineering scenarios 

such as Central Pattern Generators for legged or segmented 

Figure 6 Solution of leaky integrator oscillator 

where the value of a has been set to 2.0 in the 

code. 

Figure 5 Simulation of 'spiking' neurons. Top 

Integrate and Fire, bottom Atoll models 
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robot motion. We shall study the simplest model which 

captures the fundamental behaviour of most neural 

oscillators, the Hopf oscillator. Later we shall apply this to 

the locomotion of a hexapod robot. 

The Hopf Oscillator 
This comprises a pair of neurons, and its structure is very 

similar to the leaky-integrator model discussed (and rejected) 

above. Each neuron influences itself and is connected to the 

other neuron. Like the leaky-integrator oscillator, one of these 

inter-connections is excitatory and the other is inhibitory. 

Here are the equations for the neurons 

𝑑𝑢1
𝑑𝑡

= 𝛼(𝜇 − 𝑟2)𝑢1 − 𝜔𝑢2 

𝑑𝑢2
𝑑𝑡

= 𝜔𝑢1 + 𝛼(𝜇 − 𝑟2)𝑢2 

where there are three parameters, 𝛼, 𝜇 and 𝜔 and the variable 

r is just 

𝑟 = √𝑢1
2 + 𝑢2

2 

Looking at the two ODEs, the feedback term in each neuron 

depends on (𝜇 − 𝑟2) so if r is small then this is positive and 

the values of both neurons will grow. But if  𝑟2 > 𝜇 then the 

feedback is negative, and the values of both neurons will fall. 

In fact the trajectory in the phase plane moves to a circle of 

radius √𝜇. This is a stable limit cycle which attracts all 

trajectories in the phase plane, Fig.8. The above ODEs for the 

neurons can be transformed to polar coordinates (radius r 

angle 𝜃) as shown in Fig.9. 

𝑑𝑟

𝑑𝑡
= 𝛼(𝜇 − 𝑟2)𝑟 

𝑑𝜃

𝑑𝑡
= 𝜔 

Figure 7 Structure of the Hopf neural oscillator 

Figure 9 Limit Cycle for the Hopf oscillator 

Figure 8 Polar coordinate description of the 

phase plane 
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The first expression shows how the radius of the trajectory 

point changes with time, and the second expression shows 

how the angle changes with time. You can see that the angle 

changes at a constant rate 𝜔 which defines the frequency of 

the oscillator. The right-hand-side of the first expression is 

positive if 𝑟2 < 𝜇 causing r to increase, and it’s negative if 

𝑟2 > 𝜇 which causes r to decrease. When 𝑟2 = 𝜇 then the 

right-hand-side is zero, so r does not change. This shows that 

the trajectory will always approach the limit cycle, which for 

the Hopf oscillator is a circle. 

Phase Lag Neurons 
When we come to modelling insect gaits, we shall find that 

their legs oscillate with the same frequency, but there is a 

phase lag between legs, e.g., a 180 degree phase lag means 

one leg is moving forwards (raised off the ground) and the 

next one is moving backwards (on the ground) so the bug 

moves forwards. 

This can be achieved with a single leaky-integrator neuron 

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + 𝐼) 

where the input is e.g., 𝐼 = sin𝜔𝑡 which is a sine wave with 

frequency 𝜔. The output u of the neuron is another sine wave 

with amplitude 

𝐼

√1 + 𝜏2𝜔2
 

which is always less than I and with a phase lag given by  

tan𝜑 = 𝜔𝜏         

Now we use these results to engineer a neuron which 

provides us with a desired phase lag but keeps the amplitude 

constant. Since the frequency of the sine wave is given (e.g., 

by the Hopf oscillator) then we use the time constant 𝜏 to set 

our desired phase, 

Figure 10 Input (blue) and output (red) from a 

single neuron giving a phase difference of 60 

degrees 
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𝜏 =
tan𝜑

𝜔
 

Now to restore the amplitude to its original value I we must 

multiply the input to the neuron by the factor by which the 

amplitude was decreased, namely √1 + 𝜏2𝜔2. So, our 

engineered neuron becomes 

𝑑𝑢

𝑑𝑡
=
1

𝜏
(−𝑢 + 𝑘𝐼) 

where 

𝑘 = √1 + 𝜏2𝜔2. 

This neural circuit works well, it was used to create the 

phase lag shown in Fig.10.  

There is one complication; due to the nature of the tangent 

function, this circuit can produce a maximum phase shift of 

90 degrees, and often we need more than that. The solution is 

to use a chain of, say 3 neurons, and get each to provide 1/3 

of the total lag we need. The neural circuit sketched below 

shows just such a chain with the sine wave produced by our 

friend, the Hopf oscillator. 

 

 

 

 

 

Fig.11 shows the output of such a chain which was asked to 

produce a total phase shift of 180 degrees. You can see this 

by comparing the light blue curve (input) and the purple curve 

(output). The only slight issue is that it takes a certain time 

for the chain to settle, there is a clear initial transient which 

lasts around 4 seconds or so. 

 

Figure 11Phases along chain of three neurons, the 

total phase lag is 180 degrees 
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Insect Gait Patterns – The Hexapod 

Previous Work 
Biological systems (creatures) have provided much 

inspiration for generations of engineered robots that can 

walk, crawl or swim. One of the most influential observations 

for segmented creatures such as fish was the propagation of a 

wave of oscillation down the length of the creature. If the 

creature were cut into two, then each part would continue to 

show this wave. These observations led to the idea that the 

neural circuit consisted of a coupled chain of oscillators 

rather than just one master oscillator. 

Most previous work has adopted this architecture, e.g., the 

hexapod shown below comprises six oscillators (neuron 

pairs) one for each leg. 

 

The neural circuit for this model is quite complex, the 

equation for each neural oscillator has the form 

[
�̇�𝑖
�̇�𝑖
] = [

𝛼(𝜇 − 𝑟𝑖
2) −𝜔

𝜔 𝛼(𝜇 − 𝑟𝑖
2)
] [
𝑥𝑖
𝑧𝑖
] +∑𝑹(𝜃𝑗

𝑖)

𝑗≠𝑖

[

0
𝑥𝑗 + 𝑧𝑗

𝑟𝑗

] 

where the rightmost term captures the coupling into the i’th 

oscillator from the other oscillators connected to it. You will 

recognize the Hopf oscillator here. See appendix for maths. 
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Our Approach 
We do not need a chain of coupled oscillators since we shall 

agree not to cut up our robot into bits. Our approach is to use 

a single Hopf oscillator, then circuits of phase shift neurons 

to drive the legs and feet in the correct sequence. 

So, let’s see what we need to achieve. The literature reports 

the various gaits in a number of ways. For our hexapod there 

are three principal gaits: metachronal (wave), tetrapod 

(ripple), and tripod. One way of reporting these gaits is the 

phase lag of each leg. I use the left front leg as the reference 

(absolute phase is 0). 

Perhaps the easiest to understand is the tripod gait; the legs 

move in three triplets, {LF, LR, RM} move together in one 

direction while {LM, RF, RR} move in the other direction, 

the second group phase-lagged by 180 degrees hence this 

group moves backwards while the first group moves 

forwards. Here’s another way of representing the gaits. 
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Time is running to the right and the black bars show when the 

legs are raised, this is the ‘swing’ part of the legs’ motion 

when the foot is not touching the ground. Again the tripod 

gait is easy to understand, the group {LF, LR, RM} all swing 

together with the feet raised while the group {LM, RF, RR} 

has feet on the ground. This is the ‘stance’ part of the legs’ 

motion. 

Our hexapod robot inhabits Webots2, you can clearly see its 

legs and feet (they move up and down) in Fig.12. 

Now we must design our neural circuit to make these three 

types of gait happen. We shall use a single Hopf oscillator 

and drive the front-left (FL) foot and leg with the signal 𝑢1. 

To drive the other legs, we need to shift the phase of this 

signal to obtain the phases shown in the diagram above. A 

glance at this diagram reveals two interesting facts. First the 

phase difference down the left side between LF, LM and 

between LM, LR is the same for a particular gait. The actual 

phase difference (60, 90, 180 degrees) depends on the gait. 

The second fact is that there is a 180 degree phase shift 

between contra-lateral limbs (LF-RF, LM-RM and LR-RR). 

This suggests the following architecture which is quite 

straightforward. 

The blue circles represent the robot limbs (legs + feet) and 

the green circles neurons, or collections of neurons, since we 

need a chain of 3 neurons to produce a phase shift of 180 

degrees. A constant phase shift is produced down the left 

neurons, then each left neuron is individually phase shifted 

 
2 It would be good to get this into Unreal-4 

Figure 12 Hexapod robot showing legs and feet. 

It's executing a tripod gait 



Nature of Computing      14 
 

by 180 degrees and sent to the right. This is much simpler 

than the coupled oscillator approach used by others. 

Let’s have a look at some phase plots; we only need to 

consider the left limbs; the right phases are just mirrored. The 

diagram below shows a phase difference 𝜑 = 𝜋/3 (60 

degrees) corresponding to the metachronal gait. The black 

bars show when the foot is lifted, as shown in the gait patterns 

presented above. So, let’s discuss how to get the feet to move; 

we shall later return to the legs which are tricky buggers. 

 

 

 

 

 

 

 

 

 

 

The black bars are correct and represent when signals must 

be presented to each foot to rise. You can see the red 

horizontal lines drawn at a particular threshold value, here 

that is 0.866 for our chosen phase lag value. Our code will 

tell each foot to rise when the phase is above this threshold. 

Easy! The only question is, how do we calculate this 

threshold value? Let’s explore this with the help of the 

following diagram, where the stages in our argument are 

indicated by yellow blobs. 

First (1) We draw the bars when the LF and LM feet are 

raised. Note that this happens when the phase (blue line) rises 

above the threshold (red line), which we are trying to 
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discover. Second (2) we identify the phase lag 𝜑 between the 

two feet and also we see the centre of the top sine wave is 

located at 𝜋 2⁄ . Then the important step (3) where we identify 

the angle where the foot starts to rise. Finally (4) we calculate 

the value of the threshold for this angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, we have the expression for the threshold 

𝑠𝑖𝑛[(𝜋 − 𝜑 ) 2⁄ ] 

This is a great result since it is applicable for all three gaits 

with their own individual phase lags 𝜑, and is easily 

translated into code, Fig.13. 

We now know how to get the feet working. The final piece of 

the puzzle is to get the legs moving correctly. The legs are 

driven by the same phases as the feet (before the threshold 

calculations). Legs have two parts to their motion, a swing 

when the feet are not in contact with the ground, and a stance 

where they are in contact with the ground and so provide 

double setFoot(double phase, 

double thresh){ 

if(phase > thresh) 

    return UP; 

  else  

    return DOWN; 

} 

Figure 13 Code snipped to raise and lower the 

feet 
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propulsion. So, legs and feet have to be coordinated in their 

motion. Let’s have a look at the solution and then see how we 

got to it. 

 

 

 

 

 

 

 

 

 

 

 

The blue curve shows the foot signal; when this rises above 

the threshold, the foot is up. So the leg must swing and this is 

the red signal which goes from negative (pointing backwards) 

to positive (pointing forwards). This signal comes from an 

additional neuron which receives input from the foot neuron 

when it is above the threshold.  Here’s the code for the 

additional neuron-17 which drive the LF leg. 

 
if( y[0] > thresh)  

  drive = 1;  

else  

  drive = 0; 

dydt[17] = (-y[17] + 5.0*drive)/tau1; 

 

 

That completes the development of our hexapod model, it 

only remains to provide the complete neural circuit. 


