
Chapter 6 Neural Circuits 1

Chapter 6
Neural Circuits

A brief Introduction
This chapter on Neural Circuits is all about how the study of

biological neurons inside our brains and linked to our senses

and to our motor functions (arms, legs, heart etc.,) can inform

how we create digital computer software and hardware

artefacts. I have in mind physical artefacts such as legged

robots which draw on parallels with real biological creatures,

or image processing algorithms which draw on understanding

of how the biological eye functions. There are many sorts of

eyes, from the mammalian to the fly-eye which have different

structures and purposes. There are many sorts of legged

creatures (2, 4, 6, 8, lots) of legs and most of these biological

creatures have been used to design physical robots.

Computers have been always linked to a study of the real

world and in fact a simulation of real-world phenomena.

Perhaps the earliest was the Greek Antikythera, discovered in

the 20th century, but believed to be over 2000 years old. It was

a mechanical device used to predict the positions of the sun,

moon and planets, predict eclipses and (in retrospect) to

determine the dates of ancient Olympic games.

Computers have been always linked with mathematics, and

in particular solutions of ‘Ordinary Differential Equations’

(ODEs) which predict how things change with time, from the

trajectories of wartime projectiles to the changes of stock

market values, the beating of the heart and the synchronized

flashing of fireflies.

Computers have always been linked with Electronic

Engineering; before our digital age, in the era of analogue

computers machines contained circuits; electronic adders,

multipliers and integrators (which solved ODEs) all linked

Nature of Computing 2

together with wires, where voltages represented variables,

and controlled power stations, automotive control and more.

Computers have always been linked with cognitive

psychology which attempts to understand how the mind

works (even though no-one has proved that the mind is

located in the brain). Of particular interest to me is how

language comprehension and composition (story-writing)

works.

Computers have always been linked with medicine, from the

early stethoscopes through the development of digital

radiography to contemporary functional Nuclear Magnetic

Resonance imaging (f-MRI).

You get the idea. Computing is more than spreadsheets,

websites, databases, games and cyber; computing has

fundamental roots in the nature of man’s enquiry into reality.

So how does all of this fit into our studies, and in particular

the material presented in this and the following chapter?

Perhaps a diagram may help.

Reading from top left and moving across, the whole process

of scientific discovery, modelling and simulation and finally

application development is depicted. We start (top left) with

Chapter 6 Neural Circuits 3

a study of biological neural systems; this means observing

sections of brain material, or in vivo experiments on animals

or individual neural cells. Various Nobel Laureates such as

Golgi and Cajal (1904) and Hubel and Weisel (1981) showed

that neural systems are not just goo, they comprise individual

elements called neurons, and these worked by processing

electrical signals. This is truly fundamental; our brains work

by electronics, and they have objects (neurons) which we can

study!

Mathematical models of single neurons, and populations of

neurons were developed by a huge number of research

groups. These continue to be developed as new results come

in from biological research. Mathematical models are

important, since they can lead to the engineering of

technological artefacts (software and hardware). These

models can be crafted to simplify the complex nature of wet

biology. Models can abstract out the annoying detail and give

us a tractable (understandable) approach. Broadly speaking

there are two flavours of models. The easiest one to

understand sees the neuron as a ‘leaky integrator’ which

responds to input values with a smoothly varying output

response (Fig.1). The second model is perhaps closer to the

biological and models the ‘spikes’ emitted by real neurons

(Fig.2). This is currently the subject of active research.

Once the scientist and mathematicians have developed their

mathematical models, the engineers can take over, and

develop artefacts, and make money.

Let’s think about hardware artefacts, known today as

‘Neuromorphic Chips’. These are CPU chips which have a

totally different architecture from the sequential,

synchronously clocked processor or the parallel processing

chips, both which separate processor from memory. Intel’s

Loihi-2 neuromorphic chip has 1 million neurons which can

make 120 million connexions with other neurons, and of

course these connexions can change strength, and finally it

uses spiking neural architecture. There are a few applications

of this technology.

Figure 1 Leaky Integrator neuron. Reponse

changes smoothly with time.

Figure 2 Spiking neuron model. Information is

encoded as frequency of spikes.

Nature of Computing 4

Perhaps the most exciting development in this arena is the

creating of new wetware artefacts. Here we have come full

circle, and biological neurons are grown onto a silicon

substrate to obtain some desired processing. Applications to

odour detection have been made.

The Leaky Integrator Neuron
There are two important concepts you need to grasp. When a

neuron receives an input, its internal state changes.

Eventually this change stops, the state converges to an

equilibrium value which is the final ‘output’ of the neuron.

Let’s take a physical example, a leaky water bucket.

Look at the diagram below where water is entering the bucket

at a constant rate I and the leak is plugged.

The height of the water is shown increasing with time. Since

the water is coming in at a constant rate, then in each second

the additional height is the same, so the height u rises on a

straight line. We can write this mathematically like this,

where the symbol ∆𝑢 means change in height and the symbol

∆𝑢 means change in time

∆𝑢

∆𝑡
= 𝐼 (1)

The left side of this expression is the rate of change of height

due to the water coming in. The left side tells us ‘the height

of water is changing’. The right side I is the water flow. This

tells us ‘how the water height is changing’. A larger I means

Chapter 6 Neural Circuits 5

that more water is coming in per second, so the rate of change

of height (the left side) will be larger.

Now suppose the bucket is nearly full so we turn off the water

supply, and open the tap (leak) at the bottom. Here’s how the

water level will change

Of course, the water level falls, but not in a straight line.

When the bucket is full, there is more water pushing down on

the water in the pipe, so the flow through the pipe is larger.

When the bucket is almost empty, there is little water pushing

down on the water in the pipe, so the flow is reduced. A good

model for the water rate of flow is proportional to the height,

with a negative sign to show it’s coming out,

−𝑢

So the rate of change becomes

∆𝑢

∆𝑡
= −𝑢 (2)

So what happens when we have water coming in and leaking

out at the same time. The net water coming in is just

𝐼 − 𝑢

so the rate of change of water height is just

∆𝑢

∆𝑡
= 𝐼 − 𝑢 (3)

A diagram may help. Imagine we let the water come in for a

short time (with the leak closed) then stop the water coming

Nature of Computing 6

in and open the leak and repeat this rather strange process.

The water height might look something like this.

The amount of water that enters in each half-second is the

same, so the rise in height is the same. But since the water

height increases, the drop in height due to the leak gets larger

and larger. So the height follows a curve which becomes

flatter and flatter until is horizontal. You can see this from

expression (3),

∆𝑢

∆𝑡
= 0 𝑤ℎ𝑒𝑛 𝐼 = 𝑢

This is the equilibrium state of the bucket, the water height is

proportional to the flow into the bucket1.

There are a couple more points we must deal with before this

model is complete. First, in the above discussion we have

been thinking in discrete time steps ∆𝑡 whereas in reality the

height change is continuous with time. When we come to

actually solving neural equations by software, we shall use

continuous time. This needs a change in notation so we

replace ∆𝑡 with a new symbol dt. Think of it like this, we

make the change infinitesimally small,

lim
∆𝑡 →0

∆𝑡 = 𝑑𝑡

so our expression (3) becomes

1 The astute reader will note that we have chosen not to introduce

various constants in order to keep the maths clean.

Chapter 6 Neural Circuits 7

𝑑𝑢

𝑑𝑡
= 𝐼 − 𝑢

The second point concerns the size of the cross-sectional area

of the bucket, glance over at Fig.3. If water flows in are the

same for both buckets, then the one on the left will fill faster

than the one on the right. It is more responsive, we say it has

a smaller ‘time constant’ 𝜏 (pronounced ‘tau’). This is

incorporated into the expression like this,

𝑑𝑢

𝑑𝑡
=

1

𝜏
(−𝑢 + 𝐼) (4)

This is the final expression for the leaky bucket and is also

the expression for all the leaky integrator neuros we shall use

in this chapter. Let’s summarise this as a graph.

Expression (4) is called a ‘Ordinary Differential Equation’

(ODE). We shall need one of these for each neuron in any

circuit we construct. ODEs have application throughout

science and engineering, and other disciplines such as

business dynamics. Wherever something is changing, then

and ODE solution springs to mind.

Some Basic Neural Circuits

Single Neuron with a Single Input
The neuron in Fig.4 has an input pulse of height I and it

outputs its state 𝑢1which changes with time. We know how

to model this neuron, it’s just our leaky integrator,

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼) (5)

Figure 3 Buckets of different areas have

different response times 'tau'

Figure 4 Single Neuron with a single input

Nature of Computing 8

with equilibrium solution

𝑢1(𝑡 → ∞) = 𝐼

where we have made explicit that this happens as time

approaches infinity. Fig.5 shows a typical solution for a pulse

which rises to height I=3 then falls to zero. The neuron state

steadily rises to 3, then falls gracefully to zero, in both cases

it reaches the input value. You could think of this neural

circuit as assigning a value to a variable.

Neural Addition
The circuit shown in Fig.6 is able to add two inputs. The black

circle is called a synapse and is where an input comes into a

neuron. The output tail from the neuron is called its axon.

We can write the expression for the neuron’s behaviour as

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1 + 𝐼2) (6)

since we have two inputs! The equilibrium solution is

obtained by setting
𝑑𝑢1

𝑑𝑡
= 0 which gives us

−𝑢1 + 𝐼1 + 𝐼2

i.e.,

𝑢1 = 𝐼1 + 𝐼2

so we have added the inputs. This addition process for

variables of values 3 and 2 is shown in Fig.7

Neural Subtraction
So far we have assumed that the synapses (black) circles can

be though of making the neuron’s state increase with time

(like water coming in). These biological synapses are called

excitatory. There are also synapses which behave in the

opposite way, these inhibitory synapses have a negative

effect on the neuron’s state increase, just like sucking water

out with a pump. These can be used to perform subtraction as

shown in Fig.8.

Figure 5 Single neuron response to input

pulse of height 3

Figure 6 Neural circuit to add two variables

Figure 7 Adding two variables 3 and 2

Chapter 6 Neural Circuits 9

Again, it’s straightforward to write down the ODE for this

circuit, we have

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1 − 𝐼2) (7)

with equilibrium solution

𝑢1 = 𝐼1 − 𝐼2

Neural Multiplication
Recent research in biology has shown that individual neurons

are able to carry out multiplication. The arrangement of the

inputs is slightly different. One input makes synaptic contact

with the neuron as usual, but the second input makes contact

with the first, just before it reaches the neuron. This is called

a shunting effect. In terms of water pipes, you can think of

one pipe increasing or decreasing the flow of water in the

main pipe.

The ODE is again quite straightforward

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼1𝐼2) (8)

with equilibrium solution

𝑢1 = 𝐼1𝐼2

Applications to Autonomous Robots

Robot with steering
Here we have an autonomous robot which is driven by two

rear wheels which rotate with the same speed, and turns by

rotating the front driving wheel. The object is to build a neural

circuit so the robot will turn towards the light. Taking

inspiration from biological critters, we use two sensor

neurons and two motor neurons. The problem is how to wire

these up to obtain the desired behaviour.

Figure 8 Neural Subtraction using inhibition on

input-2

Figure 9 Neural multiplication using 'shunting'

Figure 10 Robot with steering showing 2 sensory

neurons and 2 motor neurons

Nature of Computing 10

It’s easy to understand that the sensor (eye) nearest to the light

will receive more light and therefore provide greater input to

its associated neuron. Also if the light is in front at the centre

then both these neurons will receive the same excitation, any

difference in their outputs will indicate the light is to one side

and the front wheel should turn. So, we need to calculate the

difference and use this to drive the front motor like this.

For the input sensory neurons, we have

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼𝐿)

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 + 𝐼𝑅)

then find the difference

𝑑𝑢3

𝑑𝑡
=

1

𝜏
(−𝑢3 + 𝑢1 − 𝑢2)

then drive the steering motor neuron

𝑑𝑢4

𝑑𝑡
=

1

𝜏
(−𝑢4 + 𝑢3)

and drive the rear wheel neuron

𝑑𝑢5

𝑑𝑡
=

1

𝜏
(−𝑢5 + 𝐷)

Left: drive for steering

motor. Below: drive for

rear motors.

Chapter 6 Neural Circuits 11

where D is a constant value to produce a steady forward

speed. This circuit is probably over-complex you could effect

a solution with just two neurons in total, but if nature had to

solve this problem, then that’s a probable solution. Working

down these ODEs solving each for its equilibrium state we

find

𝑢1 = 𝐼𝐿 𝑢2 = 𝐼𝑅

𝑢3 = 𝑢1 − 𝑢2 = 𝐼𝐿 − 𝐼𝑅

𝑢4 = 𝑢3 = 𝐼𝐿 − 𝐼𝑅

so indeed the motor drive 𝑢4 is the difference between the

sensor inputs, and can be positive and negative. Finally we

must make the wheel turn in the correct direction. The

solution of the motor driving the rear wheels is simply 𝑢5 =

𝐷.

Braitenberg Vehicles
These are differential-drive robots introduced by Valentino

Braitenberg as experiments in ‘Synthetic Psychology’.

Again we have two sensory and two motor neurons, and

movement towards the light is achieved by cross-coupling

left and right sensory and motor neurons, with exciting

synapses, Fig. 11. The ODEs are straightforward

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼𝐿)

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 + 𝐼𝑅)

and for the motor neurons

𝑑𝑢3

𝑑𝑡
=

1

𝜏
(−𝑢3 + 𝑢2)

𝑑𝑢4

𝑑𝑡
=

1

𝜏
(−𝑢4 + 𝑢1)

with equilibrium solutions 𝑢3 = 𝐼𝑅 and 𝑢4 = 𝐼𝐿 which drive

the wheels to make the robot turn correctly

Figure 11 Braitenberg Vehicle Problem (left)

and Solution (right).

Nature of Computing 12

A Jump Aside – Puzzles
Work out what these circuits do: output(s) in terms of

input(s). Solutions from the author

Enhancing the Leaky Integrator Model
So far the neuron has successfully performed some linear

operations such as summing the input signals. But there is a

better model of a neuron which has an additional processing

stage following the summation. So, we can think of our

enhanced neuron as having two parts. Fig.12 and we express

this like this; the output of the i’th neuron is

𝑜𝑖 = 𝑓(𝑢𝑖)

where the 𝑢𝑖 is the internal state of the i’th neuron, just what

we have been working with so far. This may not make too

much sense (because it’s abstract). So let’s look at a

concrete example of an output function

Threshold Output Function
Here the output function takes the neuron state 𝑢𝑖 and if it is

above some threshold value 𝜃 which you can choose, then

(a)

(b)

(c)

Figure 12 Enhanced neuron model with output

function

Figure 13 Theshold output function

Chapter 6 Neural Circuits 13

the neuron output is 1, else it is zero. This function is shown

in Fig.13. To understand this, let’s take a worked example

The NAND-Gate
All computer electronics (CPU and memory) can be built

from a load of NAND-gates. If we can find a neural circuit

for a NAND gate, then we can build an entire computer out

of neurons. It’s quite easy really.

Let’s assume that all the neuron levels are in the range
between 0 and 1. So what do the following two circuits
output when the threshold is set to 0.5?

Well in both cases the value of the neurons state is 1+0=1

and this is above the threshold value of 0.5, so we get an

output of 1. Now think about the following two cases

In the first case the neuron state is 0+0=0 which is below

the threshold, so the output is 0. In the second case the

neuron state is 1+1=2 which is greater than the threshold,

so the output is 1. Putting all this into a table we find

input 1 input 2 state output

0 0 0 0

0 1 1 1

1 0 1 1

1 0 2 1

So this neuron functions as an OR-gate.

Figure 13 Threshold output function.

Nature of Computing 14

First we create a neural AND gate. A bit of thought shows all

we need is a two-input neuron with a threshold set to say 1.5

so that only an input (1,1) will raise the neuron’s state above

the threshold and output a 1. That’s an AND gate. To get a

NAND, we need to follow our AND by a NOT gate, so we

must design a neural NOT gate or ‘invertor’. Consider the

single input neural circuit shown in Fig.14. If we design the

neuron so its state follows this ODE

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 − 𝐼 + 1)

then we find its equilibrium state is

𝑢1 = 1 − 𝐼

so if the input is 0 the output is 1 and if the input is 1 the

output is zero. The threshold function will guarantee a nice

clean output of exactly 1 or 0, the inverse of the input. We

have a NOT gate. Therefore, we have a NAND gate.

Since we have a NAND gate we have proved that all

electronic circuits can be built from neurons.

Shunting feedback – A new type of neuron
Here we are going to invent a new type of nonlinear neuron.

It demonstrates the power we have at creating new systems,

but I must admit, there is biological support for our invention.

We will not be using an output function in this case, the

inherent nonlinearity will do this job for us.

The idea is shown in the diagram below. On the left we start

with our simple linear neuron which has a constant input of

1.0, the usual ODE is shown. Now we take a leap of faith, and

we multiply the output of this neuron, 𝑢1 by itself, using the

concept of shunting which we have seen earlier. This gives

us a new ODE which has interesting solutions.

Figure 14 Neural NOT gate

Chapter 6 Neural Circuits 15

You can see the inclusion of shunting; the bracket for the

neuron on the left is multiplied by the value of the neuron’s

state 𝑢1. The equilibrium solutions for our new neuron on

the right are simply the solutions of this expression

𝑢1(−𝑢1 + 1) = 0

and there are two: 𝑢1 = 0 and 𝑢1 = 1. Logic levels again.

But we are not complete since we must test the stability of

these two solutions. That means setting 𝑢1to a small value

close to 0, and looking whether the circuit solution returns

to 0, or diverges from it.

For 𝑢1 = 0.1 we find that 𝑑𝑢1 𝑑𝑡⁄ = 0.09, so the solution

grows away from 𝑢1 = 0. Unstable. Also for 𝑢1 = −0.1 we

find that 𝑑𝑢1 𝑑𝑡⁄ = −0.11, so again the solution diverges

from 0 (it becomes even more negative). So the solution 0 is

unstable and the circuit will not converge to this solution.

Now for the other fixed point 1.0, we try dropping down to

𝑢1 = 0.9 and here we find 𝑑𝑢1 𝑑𝑡⁄ = 0.09 so the solution

rises up back to 1.0, looking good. For 𝑢1 = 1.1, just above

1.0 we find that 𝑑𝑢1 𝑑𝑡⁄ = −0.11 so the solution returns

back down to 1.0. Hence the solution 1.0 is stable and we

expect the circuit to display this value at equilibrium.

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 1)

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1)

Nature of Computing 16

Now let’s develop this shunting circuit a little. First we need

to add an input. The ODE now looks like this

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1 + 𝐼1)

Let’s see how this circuit responds to two different inputs,
starting from a neural state 𝑢1 close to zero. The results
for two inputs, 1.0 and 1.1 are shown in Fig. 15. The

results are unsurprising but important, the curve
corresponding to the larger input always lies above the
other curve and reaches a higher equilibrium value. This
tells us that the rate of increase of the neural state is

larger when the input is larger.

Application – Finding an array maximum
Here we shall use the above shunting circuit and develop an

exciting application, a neural circuit which can find and

output the maximum number in an array of numbers. The

time taken to do this does not increase with the length of the

array. This is an incredible result and cannot be achieved

using procedural code.

Consider the circuit below with 𝐼1 = 4.5 and 𝐼2 = 5.5. The

dynamics of the circuit is also shown

First the circuit; we have taken two of our shunting neurons

and have coupled them together, through the colored lines.

Note that the coupling is inhibitory and as we shall see soon

it is shunting inhibition. We start with the input values, so

what happens next? Both the values of 𝑢1 and 𝑢2 will

Figure 15 Response of the shunting circuit to

to inputs: 1.0 (blue) and 1,1 (red)

Chapter 6 Neural Circuits 17

increase, but 𝑢2 will rise faster than 𝑢1. Since 𝑢2 is larger its

shunting inhibition (green line) on 𝑢1 will be larger than the

reciprocal inhibition of 𝑢1on 𝑢2 (red line). So 𝑢2 (which was

already rising faster) will rise even faster. This process

continues until 𝑢2 effectively kills (quenches) 𝑢1. The circuit

has selected the larger input!

Now let’s have a look at the ODEs. To help out, a ‘key’ is

provided in Fig.16 reminding us of the origin of each term.

We have two ‘symmetric’ equations

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1 − 𝑘𝑢2 + 𝐼1)

𝑑𝑢2

𝑑𝑡
=

1

𝜏
𝑢2(−𝑢2 + 1 − 𝑘𝑢1 + 𝐼2)

If we assume that both neurons have identical initial
values, 𝑢1(𝑡 = 0) = 𝑢1(𝑡 = 0) = 𝜖 where 𝜖 is a small

number, then the only difference between them is the
value of the neurons’ inputs. This will establish their
initial growth rates which, as discussed above will be
different. The term 𝑘𝑢2, inhibition from neuron-2 into
neuron 1 will be larger than the reciprocal term 𝑘𝑢1,
inhibition from neuron-1 into neuron-2 if 𝑢2 > 𝑢1 which
will be the case if 𝐼2 > 𝐼1, so neuron-1’s growth will slow

down faster than neuron-2’s growth.

Eventually neuron-1 will be killed to zero, so the

expression for neuron-2 will become

𝑑𝑢2

𝑑𝑡
=

1

𝜏
𝑢2(−𝑢2 + 1 + 𝐼2)

and the equilibrium solution of this is simply

𝑢2 = 1 + 𝐼2

in other words neuron-2 converges to a value equal to its
input plus 1. So these two neurons form a ‘winner takes
all’ circuit, which provides us with the largest input

value (plus one).

Figure 16 Meaning of individual terms

Nature of Computing 18

It’s easy to generalize this to an array of N-elements. The
circuit shown below for an array of 3 elements has one
additional neuron to give us the maximum value in the
array. It adds the outputs from the shunting inhibition
layer (only one will be non-zero) and subtracts 1 to give

us the maximum value in the input array.

The shunting layer will send the largest input value (plus 1)

to the final neuron which subtracts 1 and outputs the

maximum value. The diagram below shows the parallel

neural processing for input values (2.4, 1.3, 3.2), the largest

value 3.2 has been correctly output.

Chapter 6 Neural Circuits 19

Sure there are some ‘pathologies’, e.g., if all inputs are the

same value, then all outputs 𝑢𝑖 are the same and are summed.

It’s fairly straightforward to show that for N neurons, the final

output is

(
𝐼 + 1

1 + (𝑁 − 1)𝑘
) 𝑁 − 1

This is left as an exercise for the interested reader.

Procedural Programming with Neural Circuits
We have seen that computer hardware can be replaced with

neural circuits, so we can build a computer out of wetware.

Now comes my conjecture that procedural programming can

be replaced by neural circuits. This means we have to show

how these circuits can replace the three basic programming

constructs: sequence, selection and iteration. Currently I have

two out of the three, perhaps you can supply the missing link.

A Neural Selection Circuit
Here we shall see how to create the if-then-else construct.

Take a simple example

if(input > threshold) {

 x = 6.0;

} else {

 x = 2.0;

}

There are two different things going on here. First we have

the logic of selection or ‘control flow’ where the if statement

has a condition whose outcome is binary , we either select the

if-block or the else block. Then within each block we have a

variable assignment. This is ‘data flow’. We construct a

neural circuit keeping these two dimensions of processing

separate. Take the control flow. This is shown in the diagram

below.

The input arrives at the first neuron which has a threshold set

at threshold. So, the first neuron will output 1.0 when the

Nature of Computing 20

input is above the threshold, in other words it has generated

the ‘if’ control signal, activating the ‘if’ block of code.

The equation for the first neuron state is simple

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝑖𝑛𝑝𝑢𝑡)

and the equation for the second neuron state is just our

inverter

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 − 𝑜1 + 1)

To complete the circuit, we need a third neuron to represent

the value of the x-variable which is quite straightforward

(Fig. 17).

Sequences of procedural statements
As neural circuit engineers we have considerable freedom in

designing circuit which will produce sequences of pulses,

based of course on biological neurons. Biology reveals to us

several mechanisms of sequence generation; there are neural

oscillators (which we shall meet in the next chapter), spiking

neurons (which may be addressed in the future. But here we

shall consider chains of neuron delays. Before we get into the

details, let’s have a look at the concept we are proposing,

shown in the diagram below.

Let’s consider a sequence of two maths operations; first we

add two variables (A + B) and when sufficient time has

Figure 17 Assigning values to a variable

based on if(condition)

Chapter 6 Neural Circuits 21

passed for this to complete, we multiply the result by a third

variable C, so we end up with C x (A + B).

The two blue rectangles show processing blocks, an adder

and a multiplier; we know how to do these using neural

circuits, so imagine the circuits are inside the blocks. Now we

know that neural processing takes time (remember ‘tau’) so

the multiplication must be delayed until the addition is

complete. That is the crux of the concept. The green enable

pulse first enables (‘switches on’) the adder, and when

addition is complete, it switches the adder off. Then, a little

later it switches the multiplier on which does the second

operation. So, we have a sequence.

The only question remaining is how to we produce the green

pulse train? This is quite straightforward, we need a chain of

threshold neurons, each will provide a delay and output a

pulse like this

An example of the behaviour of a short chain is shown in

Fig.18

Figure 18 Pulse Sequence Generator: Red input

to neural chain; blue neuron states; green

thresholded outputs.

Nature of Computing 22

showing a clear series of pulses.

The whole process depends on choosing a correct time

constant and a corresponding threshold. If we specify the

threshold value 𝜏 and the length of the pulse we want T then

it turns out the required threshold is

𝜃 = 1 −
1

2 − 𝑒−
𝑇
𝜏

as shown in the appendix. The results shown in Fig.18 were

produced for a pulse length of 2 secs and a time constant f 5

secs, with a computed threshold 0.255372.

