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Chapter 6 
Neural Circuits 

A brief Introduction 
This chapter on Neural Circuits is all about how the study of 

biological neurons inside our brains and linked to our senses 

and to our motor functions (arms, legs, heart etc.,) can inform 

how we create digital computer software and hardware 

artefacts. I have in mind physical artefacts such as legged 

robots which draw on parallels with real biological creatures, 

or image processing algorithms which draw on understanding 

of how the biological eye functions. There are many sorts of 

eyes, from the mammalian to the fly-eye which have different 

structures and purposes. There are many sorts of legged 

creatures (2, 4, 6, 8, lots) of legs and most of these biological 

creatures have been used to design physical robots.  

Computers have been always linked to a study of the real 

world and in fact a simulation of real-world phenomena. 

Perhaps the earliest was the Greek Antikythera, discovered in 

the 20th century, but believed to be over 2000 years old. It was 

a mechanical device used to predict the positions of the sun, 

moon and planets, predict eclipses and (in retrospect) to 

determine the dates of ancient Olympic games. 

Computers have been always linked with mathematics, and 

in particular solutions of ‘Ordinary Differential Equations’ 

(ODEs) which predict how things change with time, from the 

trajectories of wartime projectiles to the changes of stock 

market values, the beating of the heart and the synchronized 

flashing of fireflies. 

Computers have always been linked with Electronic 

Engineering; before our digital age, in the era of analogue 

computers machines contained circuits; electronic adders, 

multipliers and integrators (which solved ODEs) all linked 
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together with wires, where voltages represented variables, 

and controlled power stations, automotive control and more. 

Computers have always been linked with cognitive 

psychology which attempts to understand how the mind 

works (even though no-one has proved that the mind is 

located in the brain). Of particular interest to me is how 

language comprehension and composition (story-writing) 

works. 

Computers have always been linked with medicine, from the 

early stethoscopes through the development of digital 

radiography to contemporary functional Nuclear Magnetic 

Resonance imaging (f-MRI). 

You get the idea. Computing is more than spreadsheets, 

websites, databases, games and cyber; computing has 

fundamental roots in the nature of man’s enquiry into reality. 

So how does all of this fit into our studies, and in particular 

the material presented in this and the following chapter? 

Perhaps a diagram may help. 

 

 

 

 

 

 

 

 

 

 

Reading from top left and moving across, the whole process 

of scientific discovery, modelling and simulation and finally 

application development is depicted. We start (top left) with 
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a study of biological neural systems; this means observing 

sections of brain material, or in vivo experiments on animals 

or individual neural cells. Various Nobel Laureates such as 

Golgi and Cajal (1904) and Hubel and Weisel (1981) showed 

that neural systems are not just goo, they comprise individual 

elements called neurons, and these worked by processing 

electrical signals. This is truly fundamental; our brains work 

by electronics, and they have objects (neurons) which we can 

study! 

Mathematical models of single neurons, and populations of 

neurons were developed by a huge number of research 

groups. These continue to be developed as new results come 

in from biological research. Mathematical models are 

important, since they can lead to the engineering of 

technological artefacts (software and hardware). These 

models can be crafted to simplify the complex nature of wet 

biology. Models can abstract out the annoying detail and give 

us a tractable (understandable) approach. Broadly speaking 

there are two flavours of models. The easiest one to 

understand sees the neuron as a ‘leaky integrator’ which 

responds to input values with a smoothly varying output 

response (Fig.1). The second model is perhaps closer to the 

biological and models the ‘spikes’ emitted by real neurons 

(Fig.2). This is currently the subject of active research. 

Once the scientist and mathematicians have developed their 

mathematical models, the engineers can take over, and 

develop artefacts, and make money. 

Let’s think about hardware artefacts, known today as 

‘Neuromorphic Chips’. These are CPU chips which have a 

totally different architecture from the sequential, 

synchronously clocked processor or the parallel processing 

chips, both which separate processor from memory. Intel’s 

Loihi-2 neuromorphic chip has 1 million neurons which can 

make 120 million connexions with other neurons, and of 

course these connexions can change strength, and finally it 

uses spiking neural architecture. There are a few applications 

of this technology. 

Figure 1 Leaky Integrator neuron. Reponse 

changes smoothly with time. 

Figure 2 Spiking neuron model. Information is 

encoded as frequency of spikes. 
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Perhaps the most exciting development in this arena is the 

creating of new wetware artefacts. Here we have come full 

circle, and biological neurons are grown onto a silicon 

substrate to obtain some desired processing. Applications to 

odour detection have been made. 

The Leaky Integrator Neuron 
There are two important concepts you need to grasp. When a 

neuron receives an input, its internal state changes. 

Eventually this change stops, the state converges to an 

equilibrium value which is the final ‘output’ of the neuron. 

Let’s take a physical example, a leaky water bucket. 

Look at the diagram below where water is entering the bucket 

at a constant rate I and the leak is plugged. 

 

The height of the water is shown increasing with time. Since 

the water is coming in at a constant rate, then in each second 

the additional height is the same, so the height u rises on a 

straight line. We can write this mathematically like this, 

where the symbol ∆𝑢 means change in height and the symbol 

∆𝑢 means change in time 

∆𝑢

∆𝑡
= 𝐼                   (1) 

The left side of this expression is the rate of change of height 

due to the water coming in. The left side tells us ‘the height 

of water is changing’. The right side I is the water flow. This 

tells us ‘how the water height is changing’. A larger I means 
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that more water is coming in per second, so the rate of change 

of height (the left side) will be larger. 

Now suppose the bucket is nearly full so we turn off the water 

supply, and open the tap (leak) at the bottom. Here’s how the 

water level will change 

 

Of course, the water level falls, but not in a straight line. 

When the bucket is full, there is more water pushing down on 

the water in the pipe, so the flow through the pipe is larger. 

When the bucket is almost empty, there is little water pushing 

down on the water in the pipe, so the flow is reduced. A good 

model for the water rate of flow is proportional to the height, 

with a negative sign to show it’s coming out, 

−𝑢 

So the rate of change becomes 

∆𝑢

∆𝑡
= −𝑢                        (2) 

So what happens when we have water coming in and leaking 

out at the same time. The net water coming in is just 

𝐼 − 𝑢 

so the rate of change of water height is just 

∆𝑢

∆𝑡
= 𝐼 − 𝑢               (3) 

A diagram may help. Imagine we let the water come in for a 

short time (with the leak closed) then stop the water coming 
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in and open the leak and repeat this rather strange process. 

The water height might look something like this. 

 

The amount of water that enters in each half-second is the 

same, so the rise in height is the same. But since the water 

height increases, the drop in height due to the leak gets larger 

and larger. So the height follows a curve which becomes 

flatter and flatter until is horizontal. You can see this from 

expression (3), 

∆𝑢

∆𝑡
= 0      𝑤ℎ𝑒𝑛    𝐼 = 𝑢                

This is the equilibrium state of the bucket, the water height is 

proportional to the flow into the bucket1. 

There are a couple more points we must deal with before this 

model is complete. First, in the above discussion we have 

been thinking in discrete time steps ∆𝑡 whereas in reality the 

height change is continuous with time. When we come to 

actually solving neural equations by software, we shall use 

continuous time. This needs a change in notation so we 

replace ∆𝑡 with a new symbol dt. Think of it like this, we 

make the change infinitesimally small, 

lim
∆𝑡 →0

∆𝑡 = 𝑑𝑡  

so our expression (3) becomes 

 
1 The astute reader will note that we have chosen not to introduce 

various constants in order to keep the maths clean. 
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𝑑𝑢

𝑑𝑡
= 𝐼 − 𝑢 

The second point concerns the size of the cross-sectional area 

of the bucket, glance over at Fig.3. If water flows in are the 

same for both buckets, then the one on the left will fill faster 

than the one on the right. It is more responsive, we say it has 

a smaller ‘time constant’ 𝜏 (pronounced ‘tau’). This is 

incorporated into the expression like this, 

𝑑𝑢

𝑑𝑡
=

1

𝜏
(−𝑢 + 𝐼)              (4) 

This is the final expression for the leaky bucket and is also 

the expression for all the leaky integrator neuros we shall use 

in this chapter. Let’s summarise this as a graph. 

 

Expression (4) is called a ‘Ordinary Differential Equation’ 

(ODE). We shall need one of these for each neuron in any 

circuit we construct. ODEs have application throughout 

science and engineering, and other disciplines such as 

business dynamics. Wherever something is changing, then 

and ODE solution springs to mind. 

Some Basic Neural Circuits 

Single Neuron with a Single Input 
The neuron in Fig.4 has an input pulse of height I and it 

outputs its state 𝑢1which changes with time. We know how 

to model this neuron, it’s just our leaky integrator, 

𝑑𝑢1

𝑑𝑡
=  

1

𝜏
(−𝑢1 + 𝐼)                    (5) 

Figure 3 Buckets of different areas have 

different response times 'tau' 

Figure 4 Single Neuron with a single input 
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with equilibrium solution 

𝑢1(𝑡 → ∞) = 𝐼 

where we have made explicit that this happens as time 

approaches infinity. Fig.5 shows a typical solution for a pulse 

which rises to height I=3 then falls to zero. The neuron state 

steadily rises to 3, then falls gracefully to zero, in both cases 

it reaches the input value. You could think of this neural 

circuit as assigning a value to a variable. 

Neural Addition 
The circuit shown in Fig.6 is able to add two inputs. The black 

circle is called a synapse and is where an input comes into a 

neuron. The output tail from the neuron is called its axon. 

We can write the expression for the neuron’s behaviour as 

𝑑𝑢1

𝑑𝑡
=  

1

𝜏
(−𝑢1 + 𝐼1 + 𝐼2)               (6) 

since we have two inputs! The equilibrium solution is 

obtained by setting 
𝑑𝑢1

𝑑𝑡
= 0 which gives us 

−𝑢1 + 𝐼1 + 𝐼2 

i.e., 

𝑢1 = 𝐼1 + 𝐼2 

so we have added the inputs. This addition process for 

variables of values 3 and 2 is shown in Fig.7 

Neural Subtraction 
So far we have assumed that the synapses (black) circles can 

be though of making the neuron’s state increase with time 

(like water coming in). These biological synapses are called 

excitatory. There are also synapses which behave in the 

opposite way, these inhibitory synapses have a negative 

effect on the neuron’s state increase, just like sucking water 

out with a pump. These can be used to perform subtraction as 

shown in Fig.8. 

Figure 5 Single neuron response to input 

pulse of height 3 

Figure 6 Neural circuit to add two variables 

Figure 7 Adding two variables 3 and 2 
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Again, it’s straightforward to write down the ODE for this 

circuit, we have 

𝑑𝑢1

𝑑𝑡
=  

1

𝜏
(−𝑢1 + 𝐼1 − 𝐼2)               (7) 

with equilibrium solution 

𝑢1 = 𝐼1 − 𝐼2 

Neural Multiplication 
Recent research in biology has shown that individual neurons 

are able to carry out multiplication. The arrangement of the 

inputs is slightly different. One input makes synaptic contact 

with the neuron as usual, but the second input makes contact 

with the first, just before it reaches the neuron. This is called 

a shunting effect. In terms of water pipes, you can think of 

one pipe increasing or decreasing the flow of water in the 

main pipe.  

The ODE is again quite straightforward 

𝑑𝑢1

𝑑𝑡
=  

1

𝜏
(−𝑢1 + 𝐼1𝐼2)             (8) 

 

with equilibrium solution 

𝑢1 = 𝐼1𝐼2 

Applications to Autonomous Robots 

Robot with steering 
Here we have an autonomous robot which is driven by two 

rear wheels which rotate with the same speed, and turns by 

rotating the front driving wheel. The object is to build a neural 

circuit so the robot will turn towards the light. Taking 

inspiration from biological critters, we use two sensor 

neurons and two motor neurons. The problem is how to wire 

these up to obtain the desired behaviour. 

Figure 8 Neural Subtraction using inhibition on 

input-2 

Figure 9 Neural multiplication using 'shunting' 

Figure 10 Robot with steering showing 2 sensory 

neurons and 2 motor neurons 
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It’s easy to understand that the sensor (eye) nearest to the light 

will receive more light and therefore provide greater input to 

its associated neuron. Also if the light is in front at the centre 

then both these neurons will receive the same excitation, any 

difference in their outputs will indicate the light is to one side 

and the front wheel should turn. So, we need to calculate the 

difference and use this to drive the front motor like this. 

 

For the input sensory neurons, we have 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼𝐿) 

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 + 𝐼𝑅) 

then find the difference 

𝑑𝑢3

𝑑𝑡
=

1

𝜏
(−𝑢3 + 𝑢1 − 𝑢2) 

then drive the steering motor neuron 

𝑑𝑢4

𝑑𝑡
=

1

𝜏
(−𝑢4 + 𝑢3) 

and drive the rear wheel neuron 

𝑑𝑢5

𝑑𝑡
=

1

𝜏
(−𝑢5 + 𝐷) 

Left: drive for steering 

motor. Below: drive for 

rear motors. 
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where D is a constant value to produce a steady forward 

speed. This circuit is probably over-complex you could effect 

a solution with just two neurons in total, but if nature had to 

solve this problem, then that’s a probable solution. Working 

down these ODEs solving each for its equilibrium state we 

find 

𝑢1 = 𝐼𝐿                     𝑢2 = 𝐼𝑅   

𝑢3 = 𝑢1 − 𝑢2       = 𝐼𝐿  − 𝐼𝑅   

𝑢4 = 𝑢3  = 𝐼𝐿  − 𝐼𝑅   

so indeed the motor drive 𝑢4 is the difference between the 

sensor inputs, and can be positive and negative. Finally we 

must make the wheel turn in the correct direction. The 

solution of the motor driving the rear wheels is simply 𝑢5 =

𝐷. 

Braitenberg Vehicles 
These are differential-drive robots introduced by Valentino 

Braitenberg as experiments in ‘Synthetic Psychology’. 

Again we have two sensory and two motor neurons, and 

movement towards the light is achieved by cross-coupling 

left and right sensory and motor neurons, with exciting 

synapses, Fig. 11. The ODEs are straightforward 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝐼𝐿) 

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 + 𝐼𝑅) 

and for the motor neurons 

𝑑𝑢3

𝑑𝑡
=

1

𝜏
(−𝑢3 + 𝑢2) 

𝑑𝑢4

𝑑𝑡
=

1

𝜏
(−𝑢4 + 𝑢1) 

with equilibrium solutions 𝑢3 = 𝐼𝑅 and 𝑢4 = 𝐼𝐿 which drive 

the wheels to make the robot turn correctly 

Figure 11 Braitenberg Vehicle Problem (left) 

and Solution (right). 
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A Jump Aside – Puzzles 
Work out what these circuits do: output(s) in terms of 

input(s). Solutions from the author 

 

Enhancing the Leaky Integrator Model 
So far the neuron has successfully performed some linear 

operations such as summing the input signals. But there is a 

better model of a neuron which has an additional processing 

stage following the summation. So, we can think of our 

enhanced neuron as having two parts. Fig.12 and we express 

this like this; the output of the i’th neuron is 

𝑜𝑖 = 𝑓(𝑢𝑖) 

where the 𝑢𝑖 is the internal state of the i’th neuron, just what 

we have been working with so far. This may not make too 

much sense (because it’s abstract). So let’s look at a 

concrete example of an output function 

Threshold Output Function 
Here the output function takes the neuron state 𝑢𝑖 and if it is 

above some threshold value 𝜃 which you can choose, then 

(a) 

(b) 

(c) 

Figure 12 Enhanced neuron model with output 

function 

Figure 13 Theshold output function 
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the neuron output is 1, else it is zero. This function is shown 

in Fig.13. To understand this, let’s take a worked example 

 

The NAND-Gate 
All computer electronics (CPU and memory) can be built 

from a load of NAND-gates. If we can find a neural circuit 

for a NAND gate, then we can build an entire computer out 

of neurons. It’s quite easy really. 

Let’s assume that all the neuron levels are in the range 
between 0 and 1. So what do the following two circuits 
output when the threshold is set to 0.5? 

Well in both cases the value of the neurons state is 1+0=1 

and this is above the threshold value of 0.5, so we get an 

output of 1. Now think about the following two cases 

In the first case the neuron state is 0+0=0 which is below 

the threshold, so the output is 0. In the second case the 

neuron state is 1+1=2 which is greater than the threshold, 

so the output is 1. Putting all this into a table we find 

input 1 input 2 state output 

0 0 0 0 

0 1 1 1 

1 0 1 1 

1 0 2 1 

So this neuron functions as an OR-gate. 

Figure 13 Threshold output function. 
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First we create a neural AND gate. A bit of thought shows all 

we need is a two-input neuron with a threshold set to say 1.5 

so that only an input (1,1) will raise the neuron’s state above 

the threshold and output a 1. That’s an AND gate. To get a 

NAND, we need to follow our AND by a NOT gate, so we 

must design a neural NOT gate or ‘invertor’. Consider the 

single input neural circuit shown in Fig.14. If we design the 

neuron so its state follows this ODE 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 − 𝐼 + 1) 

then we find its equilibrium state is 

𝑢1 = 1 − 𝐼 

so if the input is 0 the output is 1 and if the input is 1 the 

output is zero. The threshold function will guarantee a nice 

clean output of exactly 1 or 0, the inverse of the input. We 

have a NOT gate. Therefore, we have a NAND gate. 

Since we have a NAND gate we have proved that all 

electronic circuits can be built from neurons. 

Shunting feedback – A new type of neuron 
Here we are going to invent a new type of nonlinear neuron. 

It demonstrates the power we have at creating new systems, 

but I must admit, there is biological support for our invention. 

We will not be using an output function in this case, the 

inherent nonlinearity will do this job for us.  

The idea is shown in the diagram below. On the left we start 

with our simple linear neuron which has a constant input of 

1.0, the usual ODE is shown. Now we take a leap of faith, and 

we multiply the output of this neuron, 𝑢1 by itself, using the 

concept of shunting which we have seen earlier. This gives 

us a new ODE which has interesting solutions. 

 

 

Figure 14 Neural NOT gate 
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You can see the inclusion of shunting; the bracket for the 

neuron on the left is multiplied by the value of the neuron’s 

state 𝑢1. The equilibrium solutions for our new neuron on 

the right are simply the solutions of this expression 

𝑢1(−𝑢1 + 1) = 0 

and there are two: 𝑢1 = 0 and 𝑢1 = 1. Logic levels again. 

But we are not complete since we must test the stability of 

these two solutions. That means setting 𝑢1to a small value 

close to 0, and looking whether the circuit solution returns 

to 0, or diverges from it. 

For 𝑢1 = 0.1 we find that 𝑑𝑢1 𝑑𝑡⁄ = 0.09, so the solution 

grows away from 𝑢1 = 0. Unstable. Also for 𝑢1 = −0.1 we 

find that 𝑑𝑢1 𝑑𝑡⁄ = −0.11, so again the solution diverges 

from 0 (it becomes even more negative). So the solution 0 is 

unstable and the circuit will not converge to this solution. 

Now for the other fixed point 1.0, we try dropping down to 

𝑢1 = 0.9 and here we find 𝑑𝑢1 𝑑𝑡⁄ = 0.09 so the solution 

rises up back to 1.0, looking good. For 𝑢1 = 1.1, just above 

1.0 we find that 𝑑𝑢1 𝑑𝑡⁄ = −0.11 so the solution returns 

back down to 1.0. Hence the solution 1.0 is stable and we 

expect the circuit to display this value at equilibrium. 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 1) 

 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1) 
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Now let’s develop this shunting circuit a little. First we need 

to add an input. The ODE now looks like this 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1 + 𝐼1) 

Let’s see how this circuit responds to two different inputs, 
starting from a neural state 𝑢1 close to zero. The results 
for two inputs, 1.0 and 1.1 are shown in Fig. 15. The 

results are unsurprising but important, the curve 
corresponding to the larger input always lies above the 
other curve and reaches a higher equilibrium value. This 
tells us that the rate of increase of the neural state is 

larger when the input is larger. 

Application – Finding an array maximum 
Here we shall use the above shunting circuit and develop an 

exciting application, a neural circuit which can find and 

output the maximum number in an array of numbers. The 

time taken to do this does not increase with the length of the 

array. This is an incredible result and cannot be achieved 

using procedural code. 

Consider the circuit below with 𝐼1 = 4.5 and 𝐼2 = 5.5. The 

dynamics of the circuit is also shown 

 

 

 

 

 

 

First the circuit; we have taken two of our shunting neurons 

and have coupled them together, through the colored lines. 

Note that the coupling is inhibitory and as we shall see soon 

it is shunting inhibition. We start with the input values, so 

what happens next? Both the values of 𝑢1 and 𝑢2 will 

Figure 15 Response of the shunting circuit to 

to inputs: 1.0 (blue) and 1,1 (red) 
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increase, but 𝑢2 will rise faster than 𝑢1. Since 𝑢2 is larger its 

shunting inhibition (green line) on 𝑢1 will be larger than the 

reciprocal inhibition of 𝑢1on 𝑢2 (red line). So 𝑢2 (which was 

already rising faster) will rise even faster. This process 

continues until 𝑢2 effectively kills (quenches) 𝑢1. The circuit 

has selected the larger input! 

Now let’s have a look at the ODEs. To help out, a ‘key’ is 

provided in Fig.16 reminding us of the origin of each term. 

We have two ‘symmetric’ equations 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
𝑢1(−𝑢1 + 1 − 𝑘𝑢2  + 𝐼1) 

𝑑𝑢2

𝑑𝑡
=

1

𝜏
𝑢2(−𝑢2 + 1 − 𝑘𝑢1  + 𝐼2) 

If we assume that both neurons have identical initial 
values, 𝑢1(𝑡 = 0) = 𝑢1(𝑡 = 0) = 𝜖 where 𝜖 is a small 

number, then the only difference between them is the 
value of the neurons’ inputs. This will establish their 
initial growth rates which, as discussed above will be 
different. The term 𝑘𝑢2, inhibition from neuron-2 into 
neuron 1 will be larger than the reciprocal term 𝑘𝑢1, 
inhibition from neuron-1 into neuron-2 if 𝑢2 > 𝑢1 which 
will be the case if 𝐼2 > 𝐼1, so neuron-1’s growth will slow 

down faster than neuron-2’s growth. 

Eventually neuron-1 will be killed to zero, so the 

expression for neuron-2 will become 

𝑑𝑢2

𝑑𝑡
=

1

𝜏
𝑢2(−𝑢2 + 1 + 𝐼2) 

and the equilibrium solution of this is simply 

𝑢2 = 1 + 𝐼2 

in other words neuron-2 converges to a value equal to its 
input plus 1. So these two neurons form a ‘winner takes 
all’ circuit, which provides us with the largest input 

value (plus one). 

Figure 16 Meaning of individual terms 
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It’s easy to generalize this to an array of N-elements. The 
circuit shown below for an array of 3 elements has one 
additional neuron to give us the maximum value in the 
array. It adds the outputs from the shunting inhibition 
layer (only one will be non-zero) and subtracts 1 to give 

us the maximum value in the input array. 

 

 

 

 

 

 

 

 

The shunting layer will send the largest input value (plus 1) 

to the final neuron which subtracts 1 and outputs the 

maximum value. The diagram below shows the parallel 

neural processing for input values (2.4, 1.3, 3.2), the largest 

value 3.2 has been correctly output. 
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Sure there are some ‘pathologies’, e.g., if all inputs are the 

same value, then all outputs 𝑢𝑖 are the same and are summed. 

It’s fairly straightforward to show that for N neurons, the final 

output is 

(
𝐼 + 1

1 + (𝑁 − 1)𝑘
) 𝑁 − 1 

This is left as an exercise for the interested reader. 

Procedural Programming with Neural Circuits 
We have seen that computer hardware can be replaced with 

neural circuits, so we can build a computer out of wetware. 

Now comes my conjecture that procedural programming can 

be replaced by neural circuits. This means we have to show 

how these circuits can replace the three basic programming 

constructs: sequence, selection and iteration. Currently I have 

two out of the three, perhaps you can supply the missing link. 

A Neural Selection Circuit 
Here we shall see how to create the if-then-else construct. 

Take a simple example 

if(input > threshold) { 

  x = 6.0; 

} else { 

  x = 2.0; 

} 

 

There are two different things going on here. First we have 

the logic of selection or ‘control flow’ where the if statement 

has a condition whose outcome is binary , we either select the 

if-block or the else block. Then within each block we have a 

variable assignment. This is ‘data flow’. We construct a 

neural circuit keeping these two dimensions of processing 

separate. Take the control flow. This is shown in the diagram 

below. 

The input arrives at the first neuron which has a threshold set 

at threshold. So, the first neuron will output 1.0 when the 
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input is above the threshold, in other words it has generated 

the ‘if’ control signal, activating the ‘if’ block of code. 

 

 

 

 

 

 

The equation for the first neuron state is simple 

𝑑𝑢1

𝑑𝑡
=

1

𝜏
(−𝑢1 + 𝑖𝑛𝑝𝑢𝑡) 

and the equation for the second neuron state is just our 

inverter 

𝑑𝑢2

𝑑𝑡
=

1

𝜏
(−𝑢2 − 𝑜1 + 1) 

To complete the circuit, we need a third neuron to represent 

the value of the x-variable which is quite straightforward 

(Fig. 17). 

Sequences of procedural statements 
As neural circuit engineers we have considerable freedom in 

designing circuit which will produce sequences of pulses, 

based of course on biological neurons. Biology reveals to us 

several mechanisms of sequence generation; there are neural 

oscillators (which we shall meet in the next chapter), spiking 

neurons (which may be addressed in the future. But here we 

shall consider chains of neuron delays. Before we get into the 

details, let’s have a look at the concept we are proposing, 

shown in the diagram below. 

Let’s consider a sequence of two maths operations; first we 

add two variables (A + B) and when sufficient time has 

Figure 17 Assigning values to a variable 

based on if(condition) 
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passed for this to complete, we multiply the result by a third 

variable C, so we end up with C x (A + B). 

 

 

 

 

 

 

 

The two blue rectangles show processing blocks, an adder 

and a multiplier; we know how to do these using neural 

circuits, so imagine the circuits are inside the blocks. Now we 

know that neural processing takes time (remember ‘tau’) so 

the multiplication must be delayed until the addition is 

complete. That is the crux of the concept. The green enable 

pulse first enables (‘switches on’) the adder, and when 

addition is complete, it switches the adder off. Then, a little 

later it switches the multiplier on which does the second 

operation. So, we have a sequence. 

The only question remaining is how to we produce the green 

pulse train? This is quite straightforward, we need a chain of 

threshold neurons, each will provide a delay and output a 

pulse like this 

An example of the behaviour of a short chain is shown in 

Fig.18 

Figure 18 Pulse Sequence Generator: Red input 

to neural chain; blue neuron states; green 

thresholded outputs. 
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showing a clear series of pulses. 

The whole process depends on choosing a correct time 

constant and a corresponding threshold. If we specify the 

threshold value 𝜏 and the length of the pulse we want T then 

it turns out the required threshold is 

𝜃 = 1 −
1

2 − 𝑒−
𝑇
𝜏

 

as shown in the appendix. The results shown in Fig.18 were 

produced for a pulse length of 2 secs and a time constant f 5 

secs, with a computed threshold 0.255372. 


