
Critters with the WBEngine

CBPrice 19-12-19 (Palindrome)

Aims
To explore what animations can be created with a new API, by a discovery-based approach.

Creating assets

Cell cell1 = new Cell(canvas,”redCell”); The string “redCell” is the image filename as usual.

Bug bug1 = new Bug(canvas,”name”, direction); Prepares a bug to be added, and defines its direction -
(use the keywords, up, down, right, left.) Done here so
not to create a different “add” statement

Adding assets

addB(roadTile,X,Y); These “addBs” (add Blocking) are additional adds for
this application. They conform to the “standard “ SWC
adds.

addB(bug, X,Y);

addB(cell,X,Y);

removeB(bug); Removes the bug from the system

removeB(cell); Removes the cell from the system

Movement

bug1.moveB(N); Bug1 moves N tiles in its current direction. In a while
loop situation, N = 1

bug1.rotateThenMove(clockwise/antiClockwise, N); Either clock or anticlock rotation (90-degrees, followed
by an N-tile move. In a while loop situation N=1. This
method is needed to get the bug to escape from a tile
where it has detected a cell.

bug1.turnAroundB(); About face – rotates 180 degrees

bug1.rotateB(clockwise/antiClockwise); Probably not needed

Getting underlying cell and bug information

String cellName = bug1.getCell(); This sees if there is any cell underneath the bug’s (i,j)
lattice position. The cellName is the original filename

String cellName = bug1.getCellAhead(); Returns the name of any cell at the next tile to be
visited by the bug

Bug bg = bug1.getBug(); Returns the bug at the cell bug1 is on, else null if there
is no bug there

Bug bg = bug1.getBugAhead();

Returns the bug at the next tile to be visited by the bug

i = bug1.getCellI();
j = bug1.getCellJ();

Returns the i and j location of the bug

i = cell1.getCellI();
j = cell1.getCellJ();

Returns the i and j location of the cell (not really useful)

Debugging – Outputting information

consoleOut(“Some text “+ variableName); Outputs to the engine console. Scrolls

bug1.tellsB(“Some text “+ variableName); Outputs to the canvas, for a short time.

bug1.tells(“Some text “+ variableName); Outputs to the canvas, permanent, over-writes.

Setting the Bug’s behaviour

bug1.setExecTime(float); Sets time for each action. Default is 1.0F secs.

cellI

ce
ll

J

Assets

Example Code

a1_assets.cde Code which will replicate the above figure (without labels)

a1_11.cde How to get the critter moving around a square.

a1_6.cde Code to show how to make a random turn at a “yellowCell”

a1_9c.cde How to handle collisions: bug-bug and bug-cell.

roadV roadH roadX

roadT4 roadT3 roadT2 roadT1

yellowCell blueCell greenCel
l

redCell

Critter Critter2

roadC4 roadC3 roadC1 roadC2

roadE4 roadE3 roadE1 roadE2

Coding

Here’s the basic code layout

// ===

// Program title, author and date

// ===

// Declarations

Bug bug1, bug2;

Cell cell1, cell2;

int i;

public void once() {

 showGridB();

 setScene(“TurtleBackground”);

 // Create instances of any assets

 bug1 = new Bug(canvas,”Critter”,up); // Initial direction of the bug. Can be up, down, left, right

 cell1 = new Cell(canvas,”yellowCell”);

 // Add tiles and assets to the map

 addB(roadX,3,3);

 …

 // Run in a continuous loop (set “someNumber” quite small when developing/debugging.

 i = 0;

 while(i < someNumber) {

 // Do tests for tile occupants first

 // Make the bugs move 1 tile

 bug1.moveB(1);

 bug2.moveB(1);

 // update loop counter

 i++;

 } // end while(…)

} // end once()

