
Wind Turbine Control UPDATED 25-04-21 

This document is very much a work in progress. While it was originally intended to support Comp3352, it is 

growing beyond that (since 3352 ceases to exist after this run). I hope that a Computing Project student 

will take this on as a project next year. Stuff directly relevant to Comp3352 is indicated Comp3352 

1. Introduction Comp3352 
The most common form of turbines are horizontal axis such as the CART31 experimental turbine shown in 

Figure 1.  

 

This shows the main components: the tower, the rotor and the nacelle. The latter houses the low-speed 

shaft connected to the rotor, an up-speeding gearbox connected via a high-speed shaft to the electricity 

generator. This is illustrated in Figure2. The available wind energy is partially captured by the rotor where it 

appears as kinetic energy of rotation which then is converted to electrical energy. The power generated 

depends on the wind speed. Figure 3 (left) shows a graph of the power generated by the CART3 turbine as 

a function of wind speed experienced. There are three clear “regions” of operation. In Region 1, the wind 

speed is below 2.5 m/s and at these speeds the power generated is less than the loss of power in the 

machinery, so the turbine is not allowed to rotate. In Region 2 where the wind speed is between 2.5 and 

11.7 m/s the turbine adapts its speed to extract the largest amount of power. Region 3 is associated with 

wind speeds from 11.7 to 20 m/s.  Here the power absorbed and generated is limited to the operating 

point to ensure safe mechanical and electrical load limits. This can be done by changing the pitch of the 

rotor blades so they extract less wind energy, or by applying mechanical brakes. Finally, if the wind speed 

should exceed 20 m/s then the control systems may not cope, so the turbine is shut down. 

 
1 Details obtained from the National Renewable Energy Laboratory  (Colorado, US) and from personal conversations with Ervin 

Bossanyi, Principal Engineer, Turbine Engineering, GL Garrad Hassan, Bristol UK. 

Figure 1. Figure 2. 



   

The maximum amount of power which can be absorbed from the wind is not 100% of the available wind 

power, rather it is only 59% as shown by Betz. Imagine if the turbine absorbed 100% of the wind energy, 

that would mean that the wind leaving the rotor would have no kinetic energy, is it would stop! This would 

prevent any more wind from passing through the rotor, so this can’t happen. The theory behind this will be 

explained later. 

The amount of power that can be absorbed from the wind is 

𝑃 =
1

2
𝜌𝜋𝑅2𝐶𝑝𝑣3                           (1𝑎) 

where R is the radius of the rotor. The power depends on the velocity cubed (last term in the expression). 

But it also depends on the efficiency of power capture. This is known as the turbine’s power coefficient 𝐶𝑝 

which is established by measurement; it varies as shown in the diagram below. You can see that this has a 

maximum of around 0.45, so the efficiency is 45%. The turbine controller must ensure that the turbine 

operates at this point. The curve 𝐶𝑝( 𝜆) is expressed as a function of  𝜆 which is the ratio of the speed of 

the tip of the turbine blade (in m/s) to the speed of the wind, also in m/s. 

 

 

The variable 𝜆 is known as the “tip-speed ratio” and is defined as 

𝜆 =
𝜔𝑅

𝑣𝑤𝑖𝑛𝑑
                          (1𝑏) 

 

where 𝜔 is the angular speed of the rotating turbine.  

𝐶𝑝( 𝜆) 

 𝜆 



When wind passes through the blades causing them to rotate, there is a torque applied to the turbine 

shaft. This is given by  

𝜏𝑤𝑖𝑛𝑑 =
1

2
𝜌𝜋𝑅5

𝐶(𝜆)

𝜆3
𝜔2 

 

So you can see that the maximum power and torque are obtained for an optimal tip-speed ratio which 

places 𝐶(𝜆) at the maximum of its curve as discussed above. 

 

2. Region 2 Controller. The Basic Controller Comp3352 
 

So as the wind speed changes, the turbine controller must adjust the turbine rotational speed 𝜔 so it 

rotates with the optimal tip-speed ratio. 

The controller does this by using the generator which applies an opposite torque to the turbine shaft. The 

generator torque is arranged to be the following  

𝜏𝑔𝑒𝑛 =
1

2
𝜌𝜋𝑅5

𝐶𝑝𝑀𝑎𝑥

𝜆𝑜𝑝𝑡
3 𝜔2 

 

where you can see it will provide optimal power extraction. Of course the torque provided by the wind will 

not equal that, we have an error 𝜏𝑤𝑖𝑛𝑑 − 𝜏𝑔𝑒𝑛 which needs to go to zero. The difference in torques will 

provide an angular acceleration to the shaft connecting turbine and generator, so its angular velocity will 

change according to the following expression (where j is the “moment of inertia” of the rotating 

components, playing the role of mass in Newton’s second law a = F/m)  

∆𝜔 =
(𝜏𝑤𝑖𝑛𝑑 − 𝜏𝑔𝑒𝑛)

𝐽
∆𝑡 

 

This changes the rotational speeds until the torques are equal. Putting this all together we find 

∆𝜔 =
1

2𝐽
𝜌𝜋𝑅3 (

𝐶(𝜆)

𝜆3
−

𝐶𝑝𝑀𝑎𝑥

𝜆𝑜𝑝𝑡
3 ) 𝜔2 

So when  𝜆 > 𝜆𝑜𝑝𝑡 (the turbine is turning too fast), then 𝐶(𝜆) is too small (see the above graph) so the first 

term in the brackets is smaller than the second, so ∆𝜔 < 0 and the turbine slows down. A similar 

argument follows when the turbine is rotating too slowly, then  ∆𝜔 > 0 and the turbine will speed up. 

This form the basis of the controller you will code 

3. Derivation of the Wind Power and Torque Equations and the Betz Limit  

NEW 21-04-21 

Let’s have a look at wind passing a single turbine. In the diagram below arrows show the wind velocity. 

Clearly the turbine reduces wind velocity as it extracts power. That should be obvious. 



 

Let’s consider the wind passing through a streamtube, the upstream wind velocity is 𝑣1, the downstream 

velocity is 𝑣2 and the velocity at the turbine is 𝑣𝑡. 

 

 

The basic idea is all air entering the left of the streamtube stays in the streamtube until it exits the 

streamtube on the right. The entry parameters, (velocity, tube area and pressure), are 𝑣1, 𝐴1, 𝑝1, similar 

tuples are shown near the turbine and on the entry of the tube. Clearly the area of the tube increases, buw 

what about the wind velocity. The following diagram will help 

 

The blue areas show a given element of volume as it moves through the tube. Assuming air is 

incompressible then the volume stays the same. Therefore the length of the element must get smaller 

since the area gets larger. So we have for the volumes 

∆𝑙1𝐴1 = ∆𝑙2𝐴2 

But the above snapshot shows movement over the same time interval so dividing the above by this interval 

we find how the volume changes with time 

∆𝑙1

∆𝑡
𝐴1 =

∆𝑙2

∆𝑡
𝐴2 = 𝑣1𝐴1 = 𝑣2𝐴2 



So we see that the air slows down. Multiplying by the air  density 𝜌 we get an expression for the rate of 

change of mass (the same at all places) 

∆𝑚

∆𝑡
= 𝜌𝐴1𝑣1 = 𝜌𝐴𝑡𝑣𝑡 = 𝜌𝐴2𝑣2 

Hence the rate of change in momentum of the air stream between when it enters and when it leaves the 

streamtube is 

∆𝑚

∆𝑡
𝑣1 −

∆𝑚

∆𝑡
𝑣2 =  𝜌𝐴𝑡𝑣𝑡(𝑣1 − 𝑣2) 

and this is caused by the thrust on the turbine disc. 

We can use Bernoulli on in the streamtube at the left and right sides of the turbine disc 

𝑝1 +
1

2
𝜌𝑣1

2 = 𝑝𝑡𝐿 +
1

2
𝜌𝑣𝑡𝐿

2  

𝑝𝑡𝑅 +
1

2
𝜌𝑣𝑡𝑅

2 = 𝑝2 +
1

2
𝜌𝑣2

2 

Assuming that 𝑝1 = 𝑝2 and 𝑉𝑡𝐿 = 𝑉𝑡𝑅 then the pressure difference across the disc is 

𝑝𝑡𝐿 − 𝑝𝑡𝑅 =
1

2
𝜌(𝑣1

2 − 𝑣2
2) 

Since force is pressure times area, we can use this to get another expression for force on the disc 

𝐹 =
1

2
𝜌(𝑣1

2 − 𝑣2
2)𝐴𝑡 

Equating the two expressions for force we find 

𝜌𝐴𝑡𝑣𝑡(𝑣1 − 𝑣2) =
1

2
 𝜌(𝑣1

2 − 𝑣2
2)𝐴𝑡 

𝑣𝑡 =
1

2
 (𝑣1 + 𝑣2) 

which tells us the windspeed at the turbine is the average of the upwind and downwind wind speeds. 

Finally, we have an expression for the power delivered to the turbine. Power is force x velocity, so at the 

turbine we find 

𝑃 = 𝐹𝑡𝑣𝑡 =  2𝜌𝐴𝑡𝑣𝑡
2(𝑣1 − 𝑣𝑡) 

This is an interesting expression which shows how the power depends on the wind speed near the turbine. 

There are two factors, 𝑣𝑡
3which increases with 𝑣𝑡 and (𝑣1 − 𝑣𝑡) which decreases with 𝑣𝑡, so we expect the 

power - 𝑣𝑡curve to have a peak which it does. To find the peak we proceed as usual, 

𝜕𝑃

𝜕𝑣𝑡
= 0,      

which gives the result 𝑣𝑡 = 2

3
𝑣1 and also 𝑣2 = 1

3
𝑣1. 

Finally we turn to the maximum power expression, plugging this value of 𝑣𝑡 into the expression for power P 

we find 



𝑃𝑚𝑎𝑥 =
8

27
𝜌𝐴𝑡𝑣1

3                    (2) 

and if we define the power coefficient as 

𝐶𝑝 =
𝑃

1
2

 𝜌𝐴𝑡𝑣1
3
 

then we find 

𝐶𝑝,𝑚𝑎𝑥 =
16

27
= 0.593                 (3) 

This is the maximum achievable efficiency of a wind turbine (59.3%) and is known as the Betz limit. Note 

how the maximum of 𝐶𝑝 for the CART-3 turbine (shown in the initial section above) is less than this. 

  

4. Improvements to Region 2 Control  Comp3352 
See papers by Johnson and Fingersh. One idea is “Optimally Tracking Rotor Control” which resulted from 

the observation that the turbine did not respond rapidly to changes in wind speed because of its inertia. 

This means that it was unable to accelerate fast enough. To fix this, the torque provided by the generator is 

adjusted with a different control law. 

Writing with 𝐾 =  
1

2
𝜌𝜋𝑅5 𝐶𝑝𝑀𝑎𝑥

𝜆𝑜𝑝𝑡
3  we can re-write the original equation for turbine torque as 

𝜏𝑔𝑒𝑛 = 𝐾𝜔2 

 

so the original control law becomes 

∆𝜔 =
1

𝐽
(𝜏𝑤𝑖𝑛𝑑 − 𝐾𝜔2)∆𝑡 

 

Then if the turbine angular speed is too small, then the bracket is positive and the turbine will speed up 

and vice-versa. In the revised system, the generator torque is calculated according to the following 

expression, where an extra term is added 

𝜏𝑔𝑒𝑛 = 𝐾𝜔2 − 𝐺(𝜏𝑤𝑖𝑛𝑑 − 𝐾𝜔2) 

 

The “gain” G lies between 0 and 1. To see the effect of this extra term, consider the new control law 

∆𝜔 =
1

𝐽
[𝜏𝑤𝑖𝑛𝑑(𝐺 + 1) −  𝐾𝜔2(1 − 𝐺)]∆𝑡 

The first term is now larger, so the controller responds more rapidly to changes in the wind. The second 

term is smaller (and approaches 0 as G approaches 1) 

5. Inclusion of Gearbox and damping. 
 



The expression for the rotation of the turbine shaft now becomes 

∆𝜔 =
(𝜏𝑤𝑖𝑛𝑑 − 𝑛𝜏𝑔𝑒𝑛 − (𝑏𝑟 + 𝑛2𝑏𝑔)𝜔)

(𝐽𝑟 + 𝑛2𝐽𝑔)
∆𝑡 

 

where subscripts refer to rotor and generator respectively, n is the gearbox ratio and b refers to friction 

coefficients. The control law then uses 

𝜏𝑔𝑒𝑛 =
𝐾𝜔2

𝑛
 

 

Interestingly, of we neglect the friction, the only effect of the gearbox on the controlled system is to 

magnify the contribution of the generator inertia; in essence we return to our starting controller equation. 

 

For CART 3 we have 

Rotor Radius 𝑅 20m 

air density 𝜌 1.20 

rotor inertia 𝐽𝑟 3.25e5 

generator inertia 𝐽𝑔 34.4 

rotor friction 𝑏𝑟 27.36 

generator friction 𝑏𝑔 0.2 

gear ratio 𝑛 43.165 

cut in wind speed  5.0 

rated wind speed  11.7 

cut our speed  22 

 

6. Simulating the Wind  Comp3352 
Wind speed fluctuates and these fluctuations are best described statistically through the distribution 

function of speeds. A typical distribution looks like this 

 



Such distributions are successfully modelled using the Weibull or Rayleigh distribution functions. The 

Rayleigh is a little easier (it is a special case of the more general Weibull) and both have been fitted to the 

data above. The Rayleigh distribution looks like this 

𝑓(𝑣) =  
2𝑣

𝑐2
𝑒−(𝑣/𝑐)2

 

where the constant c is related to the average wind speed and its variance 

𝜇 =
𝑐√𝜋

2
           𝜎2 = 𝑐2 (2 −

𝜋

4
) 

We wish to construct a time series of wind speeds which conforms to this distribution function. It turns out 

by a remarkable theorem, that we can use the inverse of the associated cumulative distribution function. 

In this case we have 

𝑣 = 𝑐√−𝑙𝑛(𝑛) 

where n is a uniformly distributed random variable between 0 and 1. Simply coding this equation and 

feeding it with random numbers will produce the required time series of wind speeds. 

7. Automating Data Collection  Comp3352 NEW 20-04-21 

Often we want to vary wind speed and measure something like power output. Sure we could use 

setParams but there’s an easier way. 

i) First create a new timer in Actor_Initialize(…) 

  if(bApplySteppedWindSpeeds) 

    setTimer(stepWindSpeedInterval,true,'changeWindspeedTimer'); 

 

ii) Now create the call-back function 

 

function changeWindspeedTimer() { 

  if(windV < vCutout) 

    windV += stepWindSpeed; 

} 

 

iii) Declare the variables up top 

 

var(MAS14) float stepWindSpeed;  

var(MAS14) float stepWindSpeedInterval; 

var(MAS14) bool bApplySteppedWindSpeeds; 

 

iv) Now set some default values at the bottom in defaultproperties 

 

  bApplySteppedWindSpeeds=false   

  stepWindSpeedInterval=50.0 

  stepWindSpeed=2.0 



 

This will allow you to create some nice plots like the one shown below 

 

So you have windV at the top, then omega and power, and some other stuff. Don’t worry about beta; that 

is for region-III where the blade pitch changes. 

 

You could grab the data shown by the red circles and use this to plot graphs of how various quantities vary 

with windspeed. Or you could look at the data matrix in the Octave file directly. 

 

 

 
If you want to plot several graphs like this using Octave (automatically) then add a function like this into 

your code. 

 

Note the correspondence between the array indices in the arrays columnLabels and dataArray correspond 

to the logfile numbering, so you could make the first code chunk cleaner by using a loop. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function writeMatlabFileFooterNew(array<String> ccolumnLabels) { 

  local int i; 

  local String str; 

   

  mlog.logF("];"); 

  i=0; 

  while(i < ccolumnLabels.length) { 

    str = ccolumnLabels[i]@"=A(:,"@i+1@");"; 

 mlog.LogF(str); 

    i++; 

  } 

   

  // windV 

  mlog.logF("subplot(5,1,1);"); 

  mlog.logF("plot("@ccolumnLabels[0]@","@ccolumnLabels[1]@");"); 

  str = "xlabel('"@ccolumnLabels[0]@"')"; 

  mlog.Logf(str);   

  str = "ylabel('"@ccolumnLabels[1]@"')"; 

  mlog.Logf(str); 

 

  // omega 

  mlog.logF("subplot(5,1,2);"); 

  mlog.logF("plot("@ccolumnLabels[0]@","@ccolumnLabels[2]@");"); 

  str = "xlabel('"@ccolumnLabels[0]@"')"; 

  mlog.Logf(str);   

  str = "ylabel('"@ccolumnLabels[2]@"')"; 

  mlog.Logf(str);   

 

  // power 

  mlog.logF("subplot(5,1,3);"); 

  mlog.logF("plot("@ccolumnLabels[0]@","@ccolumnLabels[3]@");"); 

  str = "xlabel('"@ccolumnLabels[0]@"')"; 

  mlog.Logf(str);   

  str = "ylabel('"@ccolumnLabels[3]@"')"; 

  mlog.Logf(str);   

 

  // tsr 

  mlog.logF("subplot(5,1,4);"); 

  mlog.logF("plot("@ccolumnLabels[0]@","@ccolumnLabels[4]@");"); 

  str = "xlabel('"@ccolumnLabels[0]@"')"; 

  mlog.Logf(str);   

  str = "ylabel('"@ccolumnLabels[4]@"')"; 

  mlog.Logf(str);  

   

  // Cp 

  mlog.logF("subplot(5,1,5);"); 

  mlog.logF("plot("@ccolumnLabels[0]@","@ccolumnLabels[5]@");"); 

  str = "xlabel('"@ccolumnLabels[0]@"')"; 

  mlog.Logf(str);   

  str = "ylabel('"@ccolumnLabels[5]@"')"; 

  mlog.Logf(str);     

} 



Of course, you will need to make sure you log the data in these functions 
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8. Region-III controller Coming Soon 

9. Some Investigations for a Single Turbine Comp3352 NEW 22-04-21 
 

Most students in the past have done around 3 of the suggestions below. 

1) Perhaps the first thing to do is to establish the power versus wind speed curve, at least for region-II and 

compare this with the Betz limit. 

2) Look at the power coefficient at various wind speeds and compare with the theoretical maximum (Betz_ 

3) Look at the response to step increases in wind speed, especially how the tip-speed ratio and power 

coefficient change. 

function setLogFileColumnLabels() { 

  columnLabels.length = 0; //empty array. 

 

  columnLabels[0] = "time"; 

  columnLabels[1] = "windV"; 

  columnLabels[2] = "omega"; 

  columnLabels[3] = "power"; 

  columnLabels[4] = "TSRatio"; 

  columnLabels[5] = "Cp";  

  writeMatlabFileHeaderNew(columnLabels); 

} 

function logDataRecord() { 

  local array<float> dataArray; 

 

  dataArray.length = 0; //empty array. 

 

  dataArray[0] = time; 

  dataArray[1] = windV; 

  dataArray[2] = omega; 

  dataArray[3] = power; 

  dataArray[4] = tsr; 

  dataArray[5] = Cp; 

  

  writeMatlabFileRecordNew(dataArray); 

   

} 



4) Investigate changing the radius of the blade. This is a useful design procedure in the industry where the 

characteristics of an operating turbine can be used to estimate the characteristics of a larger turbine. Here 

is how various quantities ‘scale’. You could test these empirically. 

• Power is proportional to the area swept out by the blades, so proportional to the radius squared. 

• At a constant tip speed ratio, doubling the radius will halve the rotor speed 

• When the radius is doubled the torque will be proportional to the cube of the radius, since power is 

quadrupled and rotor speed will be halved. 

5) Investigate response to varying wind speeds. Use the average wind speed as the independent variable. 

10. Simulating Wind Farms NEW 22-04-21 
 

This is perhaps more suitable for a Computing Project rather than this module assignment. 

10.1 Wake behind a single turbine 

The sketch below is adapted from Jensen’s paper and shows the wake developing behind a single turbine, 

shown as the blue rectangle. The wind speed u is the ambient wind speed at this location. The turbine 

extracts energy from the wind and thereby reduces its speed, as shown, to 𝑣0. As this wind spreads out in 

the wake, its speed will progressively get smaller, at a distance x the speed will be 𝑣(𝑥). It’s this function 

we need to calculate. 

 

If 𝑣0 is the wind speed in front of the farm, then we know that 𝑣0 = 1

3
 𝑢. Consider the air arriving at the 

section on the right, a distance x from the left turbine. This air comes from a column delineated by the 

dotted red lines. There are two contributions, first from the cone emerging from the left turbine 

𝜋𝑟0
2𝑣0 

and second from the column minus the cone 

𝜋(𝑟2 − 𝑟0
2)𝑢 

We therefore have 

𝜋𝑟0
2𝑣0 +  𝜋(𝑟2 − 𝑟0

2)𝑢 =  𝜋𝑟(𝑥)2𝑣(𝑥)            (10.1) 



Using the fact that 𝑣0 = 1

3
 𝑢 we can solve for v(x) as a function of x.  

𝑣 = 𝑢 [1 −
2

3
(

𝑟0

𝑟0 + 𝛼𝑥
)

2

],                    (10.2) 

Solutions to this equation for a number of rotor diameters are shown below. 

 

Curves are shown for 𝑟0= 10, 20, 30, … 100, in this order starting from the dark blue top line. These curves 

show the relative wind speed v/u. Note that close to the turbine disc (x=0) we have 𝑣 = 1

3
𝑢 as indicated by 

theory. As you move downwind, the windspeed starts to recover, the relative speed marches slowly 

towards 1. The larger the turbine blade, the slower is this march; larger turbines provide a greater 

reduction in the windspeed at any downwind point. The coefficient 𝛼 depends on the surface roughness, 

for land based farms Jensen suggests this is about 0.1 which corresponds to a wake angle of 5.7 degrees. 

We have followed the thinking in Jensen’s original paper to derive this result. The later Katic paper 

extended this result, realizing that the factor 2/3 was too limiting, and the ‘velocity’ deficit’ for a turbine 

depends on the operating point of the turbine. The idea is that the deficit depends on the thrust applied to 

the turbine blades. Rather like the power coefficient 𝐶𝑝, the thrust coefficient 𝐶𝑇is defined as 

𝐶𝑇 =
𝑇

1
2

 𝜌𝐴𝑡𝑣1
2
 

where T is the thrust. Note the velocity squared in the denominator rather than velocity cubed for the 

power coefficient. The above expression for v in terms of u then becomes 

𝑣 = 𝑢 [1 −
√1 − 𝐶𝑇

(1 + 𝑘𝑥/𝑟0)2
]                              10.3) 

10.2 Overlapping Wakes 

Here things start to get really interesting. You have seen that the windspeed is reduced in the wake of a 

turbine, so if a second turbine is located in the wake of a first, it receives a lower windspeed. In turn it also 

reduces the windspeed in its wake. So how do we do the calculation? Here we follow the Shao et al., 



paper. Consider the configuration of turbines below where T2 is in the wake of T1 and T3 is in the wake of 

T1 and T2. 

 

Well we split this up, looking at T3 experiencing the wake from T1, then T3 experiencing the wake from T2 

just like this 

 

The actual calculation proceeds by calculating the ‘kinetic energy deficit’ which is the ratio of the wind 

kinetic energy lost by the turbine to the kinetic energy put in. Since kinetic energy is proportional to speed 

squared, such ratios would look like this, 

(
𝑢𝑖𝑛 − 𝑢𝑜𝑢𝑡

𝑢𝑖𝑛
)

2

≡ (1 −
𝑢𝑜𝑢𝑡

𝑢𝑖𝑛
)

2

 

So for this example to calculate the deficit of T1 and T2 into T3 we first calculate the deficit due to T1 

(1 −
𝑢13

𝑢1
)

2

 

where we calculate 𝑢13 using equation 10.3. Then we calculate the deficit due to T2 

(1 −
𝑢23

𝑢2
)

2

 

where 𝑢2 and 𝑢23 are calculated using equation 10.3. Then we sum the deficits to obtain 

(1 −
𝑢3

𝑢1
)

2

= (1 −
𝑢13

𝑢1
)

2

+ (1 −
𝑢23

𝑢2
)

2

 

The speed 𝑢1is the ‘input’ speed to T1 and the speed 𝑢3 (which we are calculating) is the ‘input’ speed to 

T3. The speed 𝑢2 depends on the location x of T2, the speeds 𝑢13 and 𝑢23 depend on the location of T3. All 

these can be calculated using equation 10.2 with the correct value of x used for each turbine. 

We may generalize this calculation to a situation where we have N upwind turbines to our ‘target’ turbine 

with index i: 



(1 −
𝑢𝑖

𝑢1
)

2

= ∑ (1 −
𝑢𝑗𝑖

𝑢𝑗
)

𝑁

𝑗=1

2

 

Let’s have a look at a worked example or two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is another approach which is less complex, and we return to Jensen. Let us consider a column of N 

turbines sitting in the wakes of upwind turbines. Jensen, as we shall see, simplifies the ‘mixing’ approach 

presented above. 

 

Working on the same principle used in deriving 10.1 we calculate the wind speed approaching turbine T2, 

𝜋𝑟0
2𝑣0 +  𝜋(𝑟2 − 𝑟0

2)𝑢 =  𝜋𝑟2𝑣1   

and, solving for 𝑣1we have, using 𝑟 = 𝑟0 + 𝛼𝑥0, 

𝑣1 = 𝑢 [1 −
2

3
(

𝑟0

𝑟0 + 𝛼𝑥0
)

2

] 

To find the velocity in front of T3 we apply the same approach giving, 

Example 1.  

 

Here we have T2 and T3 downwind of T1 and in the wake of T1. Equation 10.2 tells us that the velocity 

near T2 and T3 = 0.833u. So the ratio of the power output of this configuration to 3 non-interacting 

generators is 

𝑃

𝑃0
=

𝑢3 + 2 (0.833𝑢)3

3𝑢3
= 0.796 

So this configuration is around 80% efficient as non-interacting turbines. 



𝜋𝑟0
2 (

1

3
 𝑣1) +  𝜋(𝑟2 − 𝑟0

2)𝑣̅1 =  𝜋𝑟2𝑣2   

Here 𝑣̅1is the ‘mixed’ velocity coming in from the wake of T1 and T2 (as discussed above) and Jensen 

suggests this can be approximated by u the incident velocity. So, the above expression becomes, 

𝜋𝑟0
2 (

1

3
 𝑣1) +  𝜋(𝑟2 − 𝑟0

2)𝑢 =  𝜋𝑟2𝑣2   

and, solving for 𝑣2 

𝑣2 = 𝑢 [1 − (1 −
1

3

𝑣1

𝑢
) (

𝑟0

𝑟0 + 𝛼𝑥0
)

2

] 

This relationship holds when we walk down the column of N turbines. So, moving from the N-1’th to the 

N’th turbine we have 

𝑣𝑁 = 𝑢 [1 − (1 −
1

3

𝑣𝑁−1

𝑢
) (

𝑟0

𝑟0 + 𝛼𝑥0
)

2

] 

This recurrence relationship is easy to program (Octave, hehe). For a rotor radius 𝑟0= 10m and a turbine 

spacing 𝑥0= 50m we have the following wind speed ratios (at the exit of the numbered turbine) 

 

i 1 2 3 4 5 6 7 8 9 

𝑣𝑖 𝑢⁄  0.703 0.66 0.653 0.652 0.652 0.652 0.652 0.652 0.652 

 

This will lead to the power estimates compared with non-interacting turbines 

𝑃

𝑃0
=

13 + 0.73 + 8(0.65)3

10
= 0.35 

So the efficiency id down to 35%. If the spacing is increased to 𝑥0= 100m, we have the following wind 

speed ratios 

 

i 1 2 3 4 5 6 7 8 9 

𝑣𝑖 𝑢⁄  0.833 0.819 0.818 0.818 0.818 0.818 0.818 0.818 0.818 

 

This will lead to the power estimates compared with non-interacting turbines, 

𝑃

𝑃0
=

13 + 0.833 + 8(0.82)3

10
= 0.60 

which is almost double the efficiency. Clearly the turbine spacing 𝑥0 relative to the turbine radius 𝑟0 is 

crucial. Also very interesting is that the ratios become pretty much constant after the first couple of 

interacting turbines. 

Here’s a plot of total power ratios as a function of the number of turbines in a column, the ratio drops but 

appears to move towards a limit. The ratio for N=100 is 0.285, and for N=1000 is 0.278, and for N=10,000 is 

0.277 and for N=100,000 is 0.277. So there’s the limit. 



 


