Wind Turbine

(1) First calculate the torque on the shaft due to the wind: We find the tip-speed ratio

$$
\lambda=\frac{\omega R}{v_{\text {wind }}}
$$

(2) Then use this to calculate the power coefficient (this is coded as a look-up table)
Cp = lookupPowerCoefficient(tsr,beta);
(3) and calculate the torque on the turbine

$$
\tau_{\text {wind }}=\frac{1}{2} \rho \pi R^{5} \frac{C_{p}}{\lambda^{3}} \omega^{2}
$$

(4) Now we calculate the torque exerted on the shaft by the generator to hold the blade speed at its optimal value

$$
\tau_{g e n}=\frac{1}{2} \rho \pi R^{5} \frac{C_{p M a x}}{\lambda_{o p t}^{3}} \omega^{2}
$$

(5) Next find the difference in torque and use this as our error signal

$$
e=\tau_{\text {wind }}-\tau_{g e n}
$$

(6) Apply the error signal to change the angular speed of the rotor to its optimum.

$$
\begin{gathered}
\Delta \omega=\frac{e}{J} \Delta t \\
\omega=\omega+\Delta \omega \\
\theta=\theta+\omega \Delta t
\end{gathered}
$$

(7) Calculate the power generated

$$
P=\tau_{\text {gen }} \omega
$$

Math	Code	Meaning	ICs
$v_{\text {wind }}$	windV	wind velocity m/w	
ω	omega	angular speed of turbine shaft	0
θ	theta	angle of turbine shaft	
C_{p}	coeffPow	power coefficient	
λ	tsr	tip-speed ratio	
P	power	power output	
$\tau_{\text {wind }}$	torqueW	torque on shaft due to wind	
$\tau_{g e n}$	torqueG	torque on shaft due to generator	
e	error	difference between two torques	
β	not used	pitch of the rotor blades	

Math	Code	default	Meaning
R	R	20	radius of blades
ρ	rho	1.2	air density
J	J	644877	moment of intertia of turbine
$C_{p M a x}$	cpMax	0.4528	maximum of power coefficient
$\lambda_{\text {opt }}$	tsrOpt	5.29	optimal value of tip-speed ratio

