A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms

9:20-10:20 A Tutorial on the Dynamics and Control Wind Turbines and Wind Farms, Lucy Pao and Katie Johnson

10:20-10:40 Wind Turbine Modeling Overview for Control Engineers, Pat Moriarty and Sandy Butterfield

10:40-11:00 Control of Wind Turbines: Past, Present, and Future, Jason Laks, Lucy Pao, and Alan Wright

11:00-11:20 Wind Farm Control: Addressing the Aerodynamic Interaction Among Wind Turbines, Katie Johnson and Naveen Thomas

American Control Conference

St. Louis, MO

Lucy Pao

Katie Johnson

American Control Conference

St. Louis, MO

June 2009

Wind Energy

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Fastest growing energy source in the world
- Current global installed capacity exceeds 100,000 MW, with a projected growth of more than 20% per year for the next five years
- Wind farms today produce electrical power at a Cost-of-Energy of approximately \$0.03/kWh, comparable to that of coal and natural gas based power plants

World wind energy, total installed capacity 160,000 megawatts 140,000 120,000 100.000 80.000 60.000 40.000 20.000 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 <u>'00' 20'</u> [data from www.wwindea.org] **American Control Conference, June 2009**

Increasing Turbine Size

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

Wind Turbine Sizes

- Typical size of utility-scale wind turbines has grown dramatically
- Large flexible structures operating in uncertain environments [video]
- Advanced controllers can help increase energy capture efficiency and reduce structural loading
 - Decrease the cost of wind energy

2000 kW

Ø 80m

Boeina 7

[diagrams and schematic from <u>www.renewableenergy.no</u>, <u>www.aerospaceweb.org/aircraft/jetliner/b747</u>, and en.wikipedia.org/wiki/American_football]

01 02 02 00 00 05 00 00 00 00

Football Field

10 20 30 40 50 40 30 20 5000 kW

Ø 124m

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions

- Vertical-axis wind turbines (VAWTs) more common among smaller turbines
- HAWTs are the most commonly produced utility-scale wind turbines
- Advantages of horizontal-axis wind turbines (HAWTs)
 - Improved power capture capabilities
 - Pitchable blades
 - Improved structural performance

[photo from www.symscape.com]

[photo courtesy of L. J. Fingersh, NREL]

American Control Conference, June 2009

- Vertical-axis wind turbines (VAWTs) more common among smaller turbines
- HAWTs are the most commonly produced utility-scale wind turbines
- Advantages of horizontal-axis wind turbines (HAWTs)
 - Improved power capture capabilities
 - Pitchable blades
 - Improved structural performance

Horizontal Axis Wind Turbine

NREL's Control Advanced Research Turbine (CART2)

- Wind encounters rotor, causing it to spin
- Low-speed shaft transfers energy to the gear box
 - Steps up speed
 - Spins high-speed shaft
- High-speed shaft causes generator to spin, producing electricity
- Yaw system turns nacelle so that rotor faces into the wind

[figure courtesy of US Dept. of Energy]

Upwind HAWT

Wind Turbine Design Considerations

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

7

Pitch

- Upwind vs. downwind
 - Tower shadow
- Variable or fixed pitch
 - Initial cost
 - Ability to control loads and change aerodynamic torque
- Variable or fixed speed
 - Aerodynamic efficiency
 - Electrical power processing
- Number of blades

[figure courtesy of US Dept. of Energy]

Upwind HAWT

Operating Regions

- Region 1: Low wind speed (below 6 m/s)
 - Wind turbines not run, because power available in wind is low compared to losses in turbine system
- Region 2: Medium wind speeds (6 m/s to 11.7 m/s)
 - Variable-speed turbine captures more power
 - Fixed-speed turbine optimized for one wind speed (10 m/s)
 - Max difference in example curves is 150 kW.
 - For typical wind speed distributions, in this example, variable-speed turbine captures 2.3% more energy than constant-speed turbine
- Region 3: High wind speeds (above 11.7 m/s)
 - Power is limited to avoid exceeding safe electrical and mechanical load limits

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
 - Wind Inflow
 - Sensors
 - Actuators
 - Torque Control
 - Pitch Control
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions

Provide the second state of the second state o

Wind Inflow

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Differential heating of atmosphere is driving mechanism for earth's winds
- Numerous phenomena affect wind inflow across a wind turbine's rotor plane
 - Sea breezes
 - Frontal passages
 - Mountain and valley flows
 - Nocturnal low-level jet
- Rotor plane of MW utility-scale turbines span from 60m to 180m above the ground
- Virtually impossible to obtain a good measurement of the wind speed encountering the entire span of blades

Hourly profiles of mean wind speed after sunset on 15 Sept 2003

[Figure courtesy of R. Banta, Y. Pichugina, N. Kelley, B. Jonkman, and W. Brewer]

k : shape parameter

Characterizing the Wind

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Average wind speed
 - **Spatial**
 - Temporal
- Frequency distribution of wind speeds
 - **Spatial**
 - Temporal
- Prevailing wind direction
 - Frequency of other wind directions

Walk Around the Loops

Capacity Factor

CF =

Pao & Johnson

actual energy output over time period

c : scale parameter

energy output if turbine operated at max output over same time period

12

Wind Turbine Control Loops

- Rotor speed measured on either high-speed (generator) or low-speed (rotor) shafts
 - Gear box ratio known
- Anemometers used for supervisory control purposes
 - Usually located on nacelle behind rotor plane
 - poor measurement of wind

[figure courtesy of US Dept. of Energy]

eed measured high-speed

Upwind HAWT

Sensors

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Rotor speed measured on either high-speed (generator) or low-speed (rotor) shafts
 - Gear box ratio known
- Anemometers used for supervisory control purposes
 - Usually located on nacelle behind rotor plane
 - poor measurement of wind
- Power measurement devices

Several types of sonic and propeller anemometers on a meteorological tower at NREL's NWTC

[Photo courtesy of L. J. Fingersh, NREL]

Additional Sensors

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Strain gauges
 - Tower
 - Blades
- Accelerometers
- Position encoders
 - Drive shaft
 - Blade pitch actuation systems

Torque transducers

[figure courtesy of US Dept. of Energy]

Upwind HAWT

Provide the second state of the second state o

Actuators

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

18

- Yaw motor
 - Slow (usually < 1 deg/s)</p>
- Generator
 - Fast (time constant usually > 10x that of rotor speed)

[figure courtesy of US Dept. of Energy]

Upwind HAWT

Actuators

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Yaw motor
 - Slow (usually < 1 deg/s)</p>
- Generator
 - Fast (time constant usually > 10x that of rotor speed)

Inside the Nacelle of the 3-Bladed Controls Advanced Research Turbine (CART3) at NREL's National Wind Technology Center (NWTC)

[Photo courtesy of L. J. Fingersh, NREL]

CART3 is a 600 kW wind turbine with a 40 m rotor diameter that is used at NREL's NWTC as an experimental test bed for advanced controllers.

Actuators

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Yaw motor
 - Slow (usually < 1 deg/s)</p>
- Generator
 - Fast (time constant usually > 10x that of rotor speed)
- Blade pitch motor
 - Fast
 - Up to 18 deg/s for 600 kW turbines
 - Up to 8 deg/s for 5 MW turbines
 - Collective vs. Individual Pitch

Three pitch motors on the CART3

[Photo courtesy of L. J. Fingersh, NREL]

CART3 is equipped with independent blade pitch capability.

More on Actuators

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

19

Operational blade pitch angle data from CART2:

- CART2 is a 2-bladed, 600 kW wind turbine with a 43 m diameter rotor at NREL's NWTC
- Data from a normal shut-down event caused by the wind speed decreasing into Region 1
 - Pitch rate limited to approx 5 deg/s
 - Lag between commanded and actual pitch can be represented by a 1st-order filter

Teetering hinge on 2-bladed turbines

 Allows rotor to respond to differential loads when blades in vertical position

Torque Control

$$\tau_c = K\hat{\omega}^2$$

$$K = \frac{1}{2} \rho \pi R^5 \frac{c_{p_{\text{max}}}}{\lambda_*^3}$$

•
$$\tau_c$$
 = generator (control)
torque

*
$$\hat{\omega}$$
= measured rotor speed

•
$$\rho$$
 = air density

$$\Rightarrow$$
 R = rotor radius

C_{Pmax} = maximum power
 coefficient

 When measurements are perfect and turbine is perfectly modeled, "standard" torque control leads to optimal operation in the steady-state

Torque Control Summary

- Data from CART2
- Key features of standard torque control
 - Nonlinear
 - Only required measurement is rotor speed
 - Saturates at rotor speeds near rated
- Speed regulation achieved via pitch control

Pitch Control

PID Pitch Control

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

 Speed regulation at high winds typically achieved using PID pitch control

- $\omega_e = \text{error in rotor speed}$
- ω_d = desired rotor speed
- β_c = control pitch angle

Pitch rate actuation limits may be up to 8 deg/s

Pitch Control Variations

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

 Derivative term may be filtered to reduce measurement noise errors

- K_P, K_I , and K_D may be gain scheduled due to system nonlinearities
- Pitch control signal can be given as angle or rate of change

- Pitch control may be collective or independent
 - MIMO control options available

Pitch and Torque Control

- Pitch control saturated below rated
 - Saturation value chosen to optimize energy capture
- Pitch and torque control loops complement each other

Outline

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
 - Size
 - Multiple control loops
 - Control while stopped
 - Modeling inaccuracies
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions

- Increased flexibility may lead to structural vibrations
 - Tower motion (fore-aft and side-to-side)
 - Drive train torsion
 - Blade bending and twisting
- Rotor is larger than some
 "coherent" wind turbulence
 structures
 - Requires individual blade pitch control

[diagrams and schematic from <u>www.renewableenergy.no</u>, <u>www.aerospaceweb.org/aircraft/jetliner/b747</u>, and en.wikipedia.org/wiki/American_football]

- Transition between regions 2 and 3 sometimes leads to maximum turbine loads
- Switching between torque and pitch control may exacerbate problem
- CART2 field data during a bad transition:

Control while Stopped

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

31

- Supervisory control may stop turbines due to faults or high winds
- Little active control usually performed while stopped
 - Yaw control may still be performed to point turbine into the wind
- Extreme loads may occur during "parked" conditions, usually in high winds
- Fault detection and health monitoring are also of interest

- * Torque control assumes perfect knowledge of the turbine's C_p surface
 - Errors can be costly
- Effect of a 5% modeling error in the optimal tip speed ratio
 - Energy loss of around 1% 3% in Region 2
 - Assume we reach DOE's 20% Wind Energy by 2030 goal
 - requires ~300 GW of installed capacity
 - Assume the cost of energy is \$0.03 per kilowatt-hour (kWh)
 - Thus, a 1% loss of energy is equivalent to a loss of \$630 million per year

- Adaptive control
- Feedforward control
 - Using wind speed estimates
 - Using wind speed measurements

Lots of others under development

Pao & Johnson

Advanced Blades

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- New configurations and actuators under development
 - Multiple pitch actuators per blade
 - Will allow different pitch angles at different radial positions
 - Microtabs
 - Will change aerodynamic forces
 - Air valves
 - Will change aerodynamic forces
- Advanced blade concepts will likely require new control systems

Multiple pitch actuators per blade

Microtabs (not to scale)

- Motivation and Wind Turbine Basics
- Wind Turbine Control Loops
- Issues in Turbine Control
- Advanced Turbine Control
- Wind Farms
- Offshore Wind
- Conclusions

Wind Farm Considerations

- Wind farms can take advantage of economies of scale
- May differ from individual turbines in
 - noise
 - safety
 - visual
 - environmental effects

- Control focuses
 - Electricity
 - Aerodynamics
- Control goal is to maximize "array efficiency" given existing configuration

Offshore Wind Motivation

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

Advantages to offshore wind

- Wind resource typically higher and more consistent
- Turbine size is not limited by transportation constraints
- Visual and noise effects can be avoided more easily
- More area available, especially near population centers

U.S. has relatively more deep water near the shoreline than Europe, so more floating turbines are likely in the U.S.

Floating Platforms

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

 Floating platform configurations have been borrowed from offshore oil rig technologies

[Image courtesy of NREL]

Offshore Wind Challenges

- Waves can excite structural modes for both floating and fixed offshore turbines
- Deep water anchors are expensive
 - U.S. has more deep water near population centers than Europe
- What is the best way to control a floating inverted pendulum with a large spinning mass at its top?
 - What actuators are necessary?
 - How will control affect the energy capture?

Graphic courtesy of NREL

Conclusions

Partners in the Colorado Renewable Energy Collaboratory's Center for Research and Education in Wind

- Large, flexible turbines lend themselves to control solutions, and turbines are getting larger and more flexible
- Existing turbine controllers tend not to take advantage of the wealth of available control theory
 - Industry has been slow to adopt advanced control strategies for both individual turbines and wind farms

Offshore wind turbine control is a big

prospective area for research

