Piezo-electric Vibration Energy Harvester

(1) calc the acceleration of the beam

$$
a_{z}=\frac{1}{\beta} \frac{1}{m}(-k z-c v)+A \cos (\Omega t / \beta)
$$

(2) Calculate the vertical velocity and displacement

$$
\begin{gathered}
\Delta v=a \Delta t \\
v=v+\Delta v \\
\Delta z=v \Delta t \\
z=z+\Delta z
\end{gathered}
$$

These lines may appear a little strange. The first two will be coded as velyZ += accelZ* $\mathbf{d T}$; and the last two will be coded as dispZ += velyZ*dT;
(3) Calculate the voltage

$$
\text { voltage }=(3.25 * 1000 / 8.0) * \text { dispZ; }
$$

and the root mean square voltage
rmsVoltage = voltage/sqrt(2);
(4) and the rms power
rmsPower $=1000000.0^{*}$ rmsVoltage ${ }^{* *}$ 2/loadResistance;

Variables

Math	Code	Meaning	ICs
Δt	deltaT		0.01
t	time		0
z	dispZ	vertical displacement from equilibrium	
v	velyZ	vertical velocity	
a	accelZ	vertical acceleration	
	voltage	calculated internally from dispZ	
	rmsPower	calculated internally from voltage	

Parameters

Math	Code	Default	Meaning
m	mmass	Note 1	effective mass
k	k	Note 1	effective stiffness
c	damp	0.005	damping
	loadResistance	100000	load resistor
β	beta	50	time scaling for slow-down
	choice	PEH_S	Type of beam

Note 1. These are calculated internally from the choice of beam type. Look in the function initializeVariables(). The values here have been taken from the Dhakar et al.paper on my web-pages. The type of beam is indicated there.

Sinusoidal drive equation parameters

A	driveAmp		30
Ω	2*pi*driveFrequ	driveFrequ	36 (Hertz)

If you wish to HUD the maximum voltage and power (root mean square) then you could add this code.
if(rmsVoltage > maxRmsVoltage) maxRmsVoltage = rmsVoltage;
if(rmsPower > maxRmsPower) maxRmsPower = rmsPower;
if(dispZ < 0) \{
maxRmsVoltage=0;
maxRmsPower $=0$;
\}

